Skip to main content
Log in

Effect of the manufacturing parameters on the structure of nitrogen-doped carbon nanotubes produced by catalytic laser-induced chemical vapor deposition

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Nitrogen-containing carbon nanotubes (CNx-NTs), with a relatively high level of nitrogen doping were prepared by the catalytic laser-induced CVD method. The nanotubes were catalytically grown directly on a silicon substrate from C2H2/NH3 gaseous precursors. X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) give firm evidence for the nitrogen doping. As determined by XPS, the N concentration for the prepared CNx-NTs increases from 3.6 to 30.6 at.% with increasing ammonia concentration and pressure. TEM images indicate that the nanotubes are bamboo like. As the nitrogen content increases, there is a transition from the bamboo shape with few defects and little distortion to a corrugated structure with a much larger number of defects. Raman spectroscopy revealed that with increasing nitrogen concentration, there is more disorder and defects, together with an increase in I D/I G ratio. By energy-filtering TEM, a higher N concentration was found on the outer amorphous nanolayer than in the compartment core of the nanotubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Antunes EF, Lobo AO, Corat EJ, Trava-Airoldi VJ, Martin AA, Verissimo C (2006) Comparative study of first- and second-order Raman spectra of MWCNT at visible and infrared laser excitation. Carbon 44:2202–2211. doi:10.1016/j.carbon.2006.03.003

    Article  CAS  Google Scholar 

  • Antunes EF, Lobo AO, Corat EJ, Trava-Airoldi VJ (2007) Influence of diameter in the Raman spectra of aligned multi-walled carbon nanotubes. Carbon 45:913–921. doi:10.1016/j.carbon.2007.01.003

    Article  CAS  Google Scholar 

  • Bikiaris D (2010) Microstructure and properties of polypropylene/carbon nanotube nanocomposites. Materials 3:2884–2946. doi:10.3390/ma3042884

    Article  CAS  Google Scholar 

  • Bondi SN, Lackey WJ, Johnson RW, Wang X, Wang ZL (2006) Laser assisted chemical vapor deposition synthesis of carbon nanotubes and their characterization. Carbon 44:1393–1403. doi:10.1016/j.carbon.2005.11.023

    Article  CAS  Google Scholar 

  • Choi H, Park J, Kim B (2005) Distribution and structure of N atoms in multiwalled carbon nanotubes using variable-energy X-ray photoelectron spectroscopy. J Phys Chem B 109:4333–4340. doi:10.1021/jp0453109

    Article  CAS  Google Scholar 

  • Dresselhaus MS, Eklund PC (2000) Phonons in carbon nanotubes. Adv Phys 49:705–814. doi:10.1080/000187300413184

    Article  CAS  Google Scholar 

  • Dresselhaus MS, Dresselhaus G, Saito R, Jorio A (2005) Raman spectroscopy of carbon nanotubes. Phys Rep 409:47–99. doi:10.1016/j.physrep.2004.10.006

    Article  Google Scholar 

  • Dumitrache F, Morjan I, Alexandrescu R, Morjan RE, Voicu I, Sandu I et al (2004) Nearly monodispersed carbon coated iron nanoparticles for the catalytic growth of nanotubes/nanofibres. Diam Relat Mater 13:362–370. doi:10.1016/j.diamond.2003.10.022

    Article  CAS  Google Scholar 

  • Endo M, Hayashi T, Hong SH, Enoki T, Dresselhaus MS (2001) Scanning tunneling microscope study of boron-doped highly oriented pyrolytic graphite. J Appl Phys 90:5670–5674. doi:10.1063/1.1409581

    Article  CAS  Google Scholar 

  • Ferrari AC (2007) Raman spectroscopy of graphene and graphite: disorder, electron-phonon coupling, doping and nanoadiabatic effects. Solid State Commun 143:47–57. doi:10.1016/j.ssc.2007.03.052

    Article  CAS  Google Scholar 

  • Glenis S, Nelson AJ, Labes MM (1999) Sulfur doped graphite prepared via arc discharge of carbon rods in the presence of thiophenes. J Appl Phys 86:4464–4466. doi:10.1063/1.371387

    Article  CAS  Google Scholar 

  • Glerup M, Steinmetz J, Samaille D, Stephan O, Enouz S, Loiseau A et al (2004) Synthesis of N-doped SWNT using the arc-discharge procedure. Chem Phys Lett 387:193–197. doi:10.1016/j.cplett.2004.02.005

    Article  CAS  Google Scholar 

  • He M, Zhou S, Zhang J, Liu Z, Robinson C (2005) CVD growth of N-doped carbon nanotubes on silicon substrates and its mechanism. J Phys Chem B 109:9275–9279. doi:10.1021/jp044868d

    Article  CAS  Google Scholar 

  • Herlin N, Bohn I, Reynaud C, Cauchetier M, Galvez A, Rouzaud J-N (1998) Nanoparticles produced by Laser Pyrolysis of hydrocarbons: analogy with carbon cosmic dust. Astron Astrophys 330:1127–1135

    CAS  Google Scholar 

  • Hernandez E, Goze C, Bernier P, Rubio A (1999) Elastic properties of single-wall nanotubes. Appl Phys A Mater Sci Process 68:287–292. doi:10.1007/s003390050890

    Article  CAS  Google Scholar 

  • Ibrahim EMM, Khavrus VO, Leonhardt A, Hampel S, Oswald S, Rummeli MH et al (2010) Synthesis, characterization, and electrical properties of nitrogen-doped single-walled carbon nanotubes with different nitrogen content. Diamond Relat Mater 19:1199–1206. doi:10.1016/j.diamond.2010.05.008

    Article  CAS  Google Scholar 

  • Jang TK, Ahn JH, Lee YH, Ju BK (2003) Effect of NH3 and thickness of catalyst on growth of carbon nanotubes using thermal chemical vapor deposition Chem. Phys Lett 372:745–749. doi:10.1016/S0009-2614(03)00501-3

    CAS  Google Scholar 

  • Jang JW, Leea CE, Lyu SC, Lee TJ, Lee CJ (2004) Structural study of nitrogen-doping effects in bamboo-shaped multiwalled carbon nanotubes. Appl Phys Lett 84:2877–2879. doi:10.1063/1.1697624

    Article  CAS  Google Scholar 

  • Kaun C, Larade B, Mehrez H, Taylor J, Guo H (2002) Current-voltage characteristics of carbon nanotubes with substitutional nitrogen. Phys Rev B 65:205416–205421. doi:10.1103/PhysRevB.65.205416

    Article  Google Scholar 

  • Kiang C-H, Endo M, Ajayan PM, Dresselhaus G, Dresselhaus MS (1998) Size effects in carbon nanotubes. Phys Rev Lett 81:1869–1872. doi:10.1103/PhysRevLett.81.1869

    Article  CAS  Google Scholar 

  • Kinoshita K (1988) Carbon–electrochemical and physicochemical properties. John Wiley, New York, pp 1–85

    Google Scholar 

  • Koo′s AA, Dowling M, Jurkschat K, Crossley A, Grobert N (2009) Effect of the experimental parameters on the structure of nitrogen-doped carbon nanotubes produced by aerosol chemical vapour deposition. Carbon 47:30–37. doi:10.1016/j.carbon.2008.08.014

    Google Scholar 

  • Liu H, Arenal R, Enouz-Vedrenne S, Stephan O, Loiseau A (2009) Nitrogen configuration in individual CNx-SWNTs synthesized by laser vaporization technique. J Phys Chem C 113:9509–9511. doi:10.1021/jp902478j

    Article  Google Scholar 

  • Liu H, Zhang Y, Li R, Sun X, Desilets S, Abou-Rachid H et al (2010) Structural and morphological control of aligned nitrogen doped carbon nanotubes. Carbon 48:1498–1507. doi:10.1016/j.carbon.2009.12.045

    Article  CAS  Google Scholar 

  • Liu J, Zhang Y, Ionescu MI, Li R, Sun X (2011) Nitrogen-doped carbon nanotubes with tunable structure and high yield produced by ultrasonic spray pyrolysis. Appl Surfe Sci 257:7837–7844. doi:10.1016/j.apsusc.2011.04.041

    Article  CAS  Google Scholar 

  • Mahjouri-Samani M, Zhou YS, Xiong W, Gao Y, Mitchell M, Jiang L et al (2010) Diameter modulation by fast temperature control in laser-assisted chemical vapor deposition of single-walled carbon nanotubes. Nanotechnology 21:395601–395607. doi:10.1088/0957-4484/21/39/395601

    Article  CAS  Google Scholar 

  • Maldonado S, Morin S, Stevenson KJ (2006) Structure, composition, and chemical reactivity of carbon nanotubes by selective nitrogen doping. Carbon 44:1429–1437. doi:10.1016/j.carbon.2005.11.027

    Article  CAS  Google Scholar 

  • McEvoy N, Peltekis N, Kumar S, Rezvani E, Nolan H et al (2012) Synthesis and analysis of thin conducting pyrolytic carbon films. Carbon 50:1216–1226. doi:10.1016/j.carbon.2011.10.036

    Article  CAS  Google Scholar 

  • Morjan I, Soare I, Alexandrescu R, Morjan RE, Gavrila-Florescu L, Prodan G et al (2007) Carbon nanotubes growth from C2H2 and C2H4/NH3 by catalytic LCVD on supported iron-carbon nanocomposites. Physica E 37:26–33. doi:10.1016/j.physe.2006.10.009

    Article  CAS  Google Scholar 

  • Morjan I, Soare I, Alexandrescu R, Gavrila-Florescu L, Morjan RE, Prodan G et al (2008) Carbon nanotubes grown by catalytic CO2 laser-induced chemical vapor deposition on core-shell Fe/C composite nanoparticles. Infr Phys Tech 51:186–197. doi:10.1016/j.infrared.2007.07.001

    Article  CAS  Google Scholar 

  • Nemes-incze P, Daroczi N, Sarkozi Z, Koos AA, Kertesz K, Tiprigan O et al (2007) Synthesis of bamboo-structured multiwalled carbon nanotubes by spray pyrolysis method, using a mixture of benzene and pyridine. J Optoelectron Adv Mater 9:1525–1529

    CAS  Google Scholar 

  • Nevidomskyy A, Csanyi G, Payne M (2003) Chemically active substitutional nitrogen impurity in carbon nanotubes. Phys Rev Lett 91:105502–105506. doi:10.1103/PhysRevLett.91.105502

    Article  Google Scholar 

  • Ratkovic S, Kiss E, Boskovic G (2009) Synthesis of high-purity carbon nanotubes over alumina and silica supported bimetallic catalysts. Chem Ind Chem Eng Q 15:263–270. doi:10.2298/CICEQ0904263R

    Article  CAS  Google Scholar 

  • Reyes-Reyes M, Grobert N, Kamalakaran R, Seeger T, Golberg D, Ruhle M et al (2004) Efficient encapsulation of gaseous nitrogen inside carbon nanotubes with bamboo-like structure using aerosol thermolysis. Chem Phys Lett 396:167–173. doi:10.1016/j.cplett.2004.07.125

    Article  CAS  Google Scholar 

  • Rohmund F, Morjan R, Ledoux G, Huisken F, Alexandrescu R (2002) Carbon nanotube films grown by laser-assisted chemical vapor deposition. J Vac Sci Technol B: Microelectron Nanometer Struct 20:802–811. doi:10.1116/1.1469013

    Article  CAS  Google Scholar 

  • Shi J, Lu YF, Yi KJ, Lin YS, Liou SH, Hou JB et al (2006) Direct synthesis of single-walled carbon nanotubes bridging metal electrodes by laser-assisted chemical vapor deposition. Appl Phys Lett 89:083105–083108. doi:10.1063/1.2338005

    Article  Google Scholar 

  • Sjostrom H, Stafstrom S, Boman M, Sundgren JE (1995) Superhard and elastic carbon nitride thin films having fullerene like microstructure. Phys Rev Lett 75:1336–1339. doi:10.1103/PhysRevLett.75.1336

    Article  Google Scholar 

  • Srivastava SK, Vankar VD, Sridhar Rao DV, Kumar V (2006) Enhanced field emission characteristics of nitrogen-doped carbon nanotube films grown by microwave plasma enhanced chemical vapor deposition process. Thin Solid Films 515:1851–1856. doi:10.1016/j.tsf.2006.07.016

    Article  CAS  Google Scholar 

  • Xifei L, Jian L, Yong Z, Yongliang L, Hao L, et al (2012), High concentration nitrogen doped carbon nanotube anodes with superior Li + storage performance for lithium rechargeable battery application, 197:238–245 doi: 10.1016/j.carbon.2009.12.045

  • Zhou YS, Xiong W, Gao Y, Mahjouri-Samani M, Mitchell M, Jiang L et al (2010) Towards carbon-nanotube integrated devices: optically controlled parallel integration of single-walled carbon nanotubes. Nanotechnology 21:315601–315608. doi:10.1088/0957-4484/21/31/315601

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The first author (I. P. M.) gratefully acknowledges financial support in the frame of the Project POSDRU/89/1.5/S/63700.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iuliana P. Morjan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morjan, I.P., Alexandrescu, R., Morjan, I. et al. Effect of the manufacturing parameters on the structure of nitrogen-doped carbon nanotubes produced by catalytic laser-induced chemical vapor deposition. J Nanopart Res 15, 2045 (2013). https://doi.org/10.1007/s11051-013-2045-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-2045-z

Keywords

Navigation