Skip to main content
Log in

Pulsed laser deposition of a dense and uniform Au nanoparticles layer for surface plasmon enhanced efficiency hybrid solar cells

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

A highly dense and uniform layer of Au nanoparticles (NPs) on poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) film has been produced by the pulsed laser deposition (PLD) technique toward the production of an improved efficiency photovoltaic device. The advantage of PLD over other techniques is the easy and precise control of the Au NPs size and spatial distribution, without needing of further NP surface functionalization. The efficiency enhancement factor related to Au NPs doping has been evaluated in a solar cell based on poly-(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM) diffused bilayer. The short-circuit current density, J SC, increases by 18 % and the power conversion efficiency by 22 %, respectively, in comparison with an equivalent device without Au NPs. The optical and morphological properties of the Au NPs layer have been selected in order to evaluate the contribution of the surface plasmon resonance as enhancement factor of the solar cell efficiency, in a range size where light scattering is negligible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Balamuruga B, Maruyama T (2005) Evidence of an enhanced interband absorption in Au nanoparticles: size dependent electronic structure and optical properties. Appl Phys Lett 87:143105

    Article  Google Scholar 

  • Chen F-C, Wu J-L, Lee C-L, Hong Y, Kuo C-H, Huang MH (2009) Plasmonic-enhanced polymer photovoltaic devices incorporating solution-processable metal nanoparticles. Appl Phys Lett 95:013305

    Article  Google Scholar 

  • Eason E (2007) Pulsed laser deposition of thin films. Wiley, New York

    Google Scholar 

  • Fung DDS, Qiao L, Choy WCH, Wang C, Sha WEI, Xiea F, He S (2011) Optical and electrical properties of efficiency enhanced polymer solar cells with Au nanoparticles in a PEDOT–PSS layer. J Mater Chem 21:16349–16356

    Article  CAS  Google Scholar 

  • Gonzalo J, Perea A, Babonneau D, Afonso CN, Beer N, Barnes J-P, Petford-Long AK, Hole DE, Townsend PD (2005) Competing processes during the production of metal nanoparticles by pulsed laser deposition. Phys Rev B 71:125420

    Article  Google Scholar 

  • Gonzalo J, Siegel J, Perea A, Puerto D, Resta V, Galvan-Sosa M, Afonso CN (2007) Imaging self-sputtering and backscattering from the substrate during pulsed laser deposition of gold. Phys Rev B 76:035435

    Article  Google Scholar 

  • Gunes S, Neugebauer H, Sariciftci SN (2007) Conjugated polymer-based organic solar cells. Chem Rev 107:1324–1338

    Article  Google Scholar 

  • Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677

    Article  CAS  Google Scholar 

  • Kim K, Carroll DL (2005) Roles of Au and Ag nanoparticles in efficiency enhancement of poly(3-octylthiophene)/C60 bulk heterojunction photovoltaic devices. Appl Phys Lett 87:203113

    Article  Google Scholar 

  • Kim SS, Na S-I, Jo J, Kim D-Y, Nah Y-C (2008) Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles. Appl Phys Lett 93:073307

    Article  Google Scholar 

  • Kreibig U, Vollmer M (1994) Optical properties of metal clusters. Springer, Berlin

    Google Scholar 

  • Link S, El-Sayed MA (2003) Optical properties and ultrafast dynamics of metallic nanocrystals. Annu Rev Phys Chem 54:331–366

    Article  CAS  Google Scholar 

  • Liz-Marzán LM (2006) Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir 22:32–41

    Article  Google Scholar 

  • Loiudice A, Rizzo A, Latini G, Nobile C, de Giorgi M, Gigli G (2012a) Graded vertical phase separation of donor/acceptor species for polymer solar cells. Sol Energy Mat Sol Cells 100:147–152

    Article  CAS  Google Scholar 

  • Loiudice A, Rizzo A, Biasiucci M, Gigli G (2012b) Bulk heterojunction vs. diffused bilayer: the role of device geometry in solution p-doped polymer based solar cells. J Phys Chem Lett 3:1908–1915

    Article  CAS  Google Scholar 

  • Niesen B, Rand BP, Van Dorpe P, Cheyns D, Shen H, Maes B, Heremans P (2012) Near-field interactions between metal nanoparticle surface plasmons and molecular excitons in thin-films. Part I: absorption. J Phys Chem C 116:24206–24214

    Article  CAS  Google Scholar 

  • Park SH, Roy A, Beaupré S, Cho S, Coates N, Moon JS, Moses D, Leclerc M, Lee K, Heeger AJ (2009) Bulk heterojunction solar cells with internal quantum efficiency approaching 100 %. Nat Photon 3:297–303

    Article  CAS  Google Scholar 

  • Rand BP, Peumans P, Forrest SR (2004) Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters. J Appl Phys 96:7519

    Article  CAS  Google Scholar 

  • Requejo-Isidro J, del Coso R, Solis J, Gonzalo J, Afonso CN (2005) Role of surface-to-volume ratio of metal nanoparticles in optical properties of Cu:Al2O3 nanocomposite films. Appl Phys Lett 86:193104

    Article  Google Scholar 

  • Resta V, Siegel J, Bonse J, Gonzalo J, Afonso CN, Piscopiello E, van Tendeloo G (2006) Sharpening the shape distribution of gold nanoparticles by laser irradiation. J Appl Phys 100:084311

    Article  Google Scholar 

  • Resta V, Afonso CN, Piscopiello E, van Tendeloo G (2009) Role of substrate on nucleation and morphology of gold nanoparticles produced by pulsed laser deposition. Phys Rev B 79:235409

    Article  Google Scholar 

  • Resta V, Gonzalo J, Afonso CN, Piscopiello E, García J (2011) Coverage induced regulation of Au nanoparticles during pulsed laser deposition. J Appl Phys 109:94302

    Article  Google Scholar 

  • Topp K, Borchert H, Johnen F, Tunc AV, Knipper M, von Hauff E, Parisi J, Al-Shamery K (2010) Impact of the incorporation of Au nanoparticles into polymer/fullerene solar cells. J Phys Chem A 114:3981–3989

    Article  CAS  Google Scholar 

  • Tromholt T, Madsen MV, Carlé JE, Helgesen M, Krebs FC (2012) Photochemical stability of conjugated polymers, electron acceptors and blends for polymer solar cells resolved in terms of film thickness and absorbance. J Mater Chem 22:7592–7760

    Article  CAS  Google Scholar 

  • Villars P, Calvert LD (1997) Pearson’s handbook of crystallographic data for intermetallic compounds, 2nd edn. American Society for Metals, Materials Park (1991) and the desktop edition 1997

    Google Scholar 

  • Wang DH, Kim DY, Choi KW, Seo JH, Im SH, Park JH, Park OO, Heeger AJ (2011) Enhancement of donor–acceptor polymer bulk heterojunction solar cell power conversion efficiencies by addition of Au nanoparticles. Angew Chem Int Ed 50:5519–5523

    Article  CAS  Google Scholar 

  • Wang CCD, Choy WCH, Duan C, Fung DDS, Sha WEI, Xie F-X, Huang F, Cao Y (2012) Optical and electrical effects of gold nanoparticles in the active layer of polymer solar cells. J Mater Chem 22:1206–1211

    Article  CAS  Google Scholar 

  • Wu J-L, Chen F-C, Hsiao Y-S, Chien CF-C, Chen P, Kuo C-H, Huang MH, Hsu C-S (2011) Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells. ACS Nano 5:959–967

    Article  CAS  Google Scholar 

  • Yang J, You J, Chen C-C, Hsu W-C, Tan H-R, Zhang X-W, Hong Z, Yang Y (2011) Plasmonic polymer tandem solar cell. ACS Nano 5:6210–6217

    Article  CAS  Google Scholar 

  • Zhao P, Li N, Astruc D (2013) State of the art in gold nanoparticle synthesis. Coord Chem Rev 257:638–665

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Italian projects Rete Nazionale di Ricerca sulle Nanoscienze ItalNanoNet (FIRB reference number RBPR05JH2P), EFOR-Energia da FOnti Rinnovabili (Iniziativa CNR per il Mezzogiorno L. 191/2009 art. 2 comma 44), and by the European project ESCORT—Efficient Solar Cells based on Organic and hybrid Technology (7th FWP—reference number 261920).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Resta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Resta, V., Caricato, A.P., Loiudice, A. et al. Pulsed laser deposition of a dense and uniform Au nanoparticles layer for surface plasmon enhanced efficiency hybrid solar cells. J Nanopart Res 15, 2017 (2013). https://doi.org/10.1007/s11051-013-2017-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-2017-3

Keywords

Navigation