Skip to main content
Log in

Dense Ge nanocrystal layers embedded in oxide obtained by controlling the diffusion–crystallization process

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Amorphous Ge/SiO2 multilayer structures deposited by magnetron sputtering have been annealed at different temperatures between 650 and 800 °C for obtaining Ge nanocrystals in oxide matrix. The properties of the annealed structures were investigated by transmission electron microscopy, Raman spectroscopy, and low temperature photoluminescence. The Ge crystallization is partially achieved at 650 °C and increases with annealing temperature. Insight of the Ge nanocrystal formation was acquired by comparing two annealing procedures, i.e., in a conventional tube furnace and by a rapid thermal annealing. By rapid thermal annealing in comparison to conventional furnace one, the Ge crystallization process is faster than Ge diffusion, resulting in the formation of more compact layers of Ge nanocrystals with 8–9.5-nm size as Raman spectroscopy reveals. These findings are important to improve the annealing efficiency in the nanocrystals formation for a precise control of their sizes and location in oxide matrix and for the possibility to create systems with interacting nanoparticles for charge or excitonic transfer. The infrared photoluminescence of Ge nanocrystals at low temperatures shows strong emission with two sharp peaks at about 1,000 meV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ağan S, Dana A, Aydinli A (2006) TEM studies of Ge nanocrystal formation in PECVD grown SiO2:Ge/SiO2 multilayers. J Phys Condens Matter 18:5037–5045. doi:10.1088/0953-8984/18/22/004

    Article  Google Scholar 

  • Ang R, Chen TP, Yang M, Wong JI, Yi MD (2010) The charge trapping and memory effect in SiO2 thin films containing Ge nanocrystals. J Phys D 43:015102. doi:10.1088/0022-3727/43/1/015102

    Article  Google Scholar 

  • Arguirov T, Mchedlidze T, Kittler M, Rölver R, Berghoff B, Först M, Spangenberg B (2006) Residual stress in Si nanocrystals embedded in a SiO2 matrix. Appl Phys Lett 89:053111. doi:10.1063/1.2260825

    Article  Google Scholar 

  • Buljan M, Desnica UV, Dražić G, Ivanda M, Radić N, Dubček P, Salamon K, Bernstorff S, Holý V (2009) The influence of deposition temperature on the correlation of Ge quantum dot positions in amorphous silica matrix. Nanotechnology 20:085612. doi:10.1088/0957-4484/20/8/085612

    Article  CAS  Google Scholar 

  • Chang JE, Liao PH, Chien CY, Hsu JC, Hung MT, Chang HT, Lee SW, Chen WY, Hsu TM, George T, Li PW (2012) Matrix and quantum confinement effects on optical and thermal properties of Ge quantum dots. J Phys D 45:105303. doi:10.1088/0022-3727/45/10/105303

    Article  Google Scholar 

  • Chew HG, Zheng F, Choi WK, Chim WK, Foo YL, Fitzgerald EA (2007) Influence of reductant and germanium concentration on the growth and stress development of germanium nanocrystals in silicon oxide matrix. Nanotechnology 18:065302. doi:10.1088/0957-4484/18/6/065302

    Article  Google Scholar 

  • Choi WK, Choo CK, Han KK, Chen JH, Loh FC, Tan KL (1998) Densification of radio frequency sputtered silicon oxide films by rapid thermal annealing. J Appl Phys 83:2308–2314. doi:10.1063/1.366974

    Article  CAS  Google Scholar 

  • Choi WK, Ho YW, Ng V (2001) Effect of size of Ge nanocrystals embedded in SiO2 on Raman spectra. Mater Phys Mech 4:46–50

    CAS  Google Scholar 

  • Das S, Singha RK, Manna S, Gangopadhyay S, Dhar A, Ray SK (2011) Microstructural, chemical bonding, stress development and charge storage characteristics of Ge nanocrystals embedded in hafnium oxide. J Nanopart Res 13:587–595. doi:10.1007/s11051-010-0054-8

    Article  CAS  Google Scholar 

  • Das S, Aluguri R, Manna S, Singha R, Dhar A, Pavesi L, Ray SK (2012) Optical and electrical properties of undoped and doped Ge nanocrystals. Nanoscale Res Lett 7:143. doi:10.1186/1556-276X-7-143

    Article  Google Scholar 

  • Foss S, Finstad TG, Dana A, Aydinli A (2007) Growth of Ge nanoparticles on SiO2/Si interfaces during annealing of plasma enhanced chemical vapor deposited thin films. Thin Solid Films 515:6381–6384. doi:10.1016/j.tsf.2006.11.094

    Article  CAS  Google Scholar 

  • Fujii M, Hayashi S, Yamamoto K (1991) Growth of Ge microcrystals in SiO2 thin film matrices: a Raman and electron microscopic study. Jpn J Appl Phys 30:687–694. doi:10.1143/JJAP.30.687

    Article  CAS  Google Scholar 

  • Gao F, Green MA, Conibeer G, Cho EC, Huang Y, Pere-Wurfl I, Flynn C (2008) Fabrication of multilayered Ge nanocrystals by magnetron sputtering and annealing. Nanotechnology 19:455611. doi:10.1088/0957-4484/19/45/455611

    Article  Google Scholar 

  • Hessel CM, Wei J, Reid D, Fujii H, Downer MC, Korgel BA (2012) Raman spectroscopy of oxide-embedded and-stabilized silicon nanocrystals. J Phys Chem Lett 3:1089–1093. doi:10.1021/jz300309n

    Article  CAS  Google Scholar 

  • Hiller D, Goetze S, Zacharias M (2011) Rapid thermal annealing of size-controlled Si nanocrystals: dependence of interface defect density on thermal budget. J Appl Phys 109:054308. doi:10.1063/1.3556449

    Article  Google Scholar 

  • Huo Y, Lin H, Chen R, Rong YW, Kamins TI, Harris JS (2012) MBE growth of tensile-strained Ge quantum wells and quantum dots. Front Optoelectron 5:112–116. doi:10.1007/s12200-012-0193-x

    Google Scholar 

  • Iwayama TS, Hama T, Hole DE, Boyd IW (2006) Enhanced luminescence from encapsulated silicon nanocrystals in SiO2 with rapid thermal anneal. Vacuum 81:179–185. doi:10.1016/j.vacuum.2006.03.023

    Article  CAS  Google Scholar 

  • Janicki V, Sancho-Parramon J, Zorc H, Salamon K, Buljan M, Radić N, Desnica U (2011) Ellipsometric study of thermally induced redistribution and crystallization of Ge in Ge:SiO2 mixture layers. Thin Solid Films 519:5419–5423. doi:10.1016/j.tsf.2011.02.071

    Article  CAS  Google Scholar 

  • Jie YX, Wee ATS, Huan CHA, Sun WX, Shen ZX, Chua SJ (2004) Raman and photoluminescence properties of Ge nanocrystals in silicon oxide matrix. Mater Sci Eng B 107:8–13. doi:10.1016/j.mseb.2003.09.037

    Article  Google Scholar 

  • Jie Y, Wee ATS, Huan CHA, Shen ZX, Choi WK (2011) Phonon confinement in Ge nanocrystals in silicon oxide matrix. J Appl Phys 109:033107. doi:10.1063/1.3503444

    Article  Google Scholar 

  • Kanemitsu Y, Masuda K, Yamamoto M, Kajiyama K, Kushida T (2000) Near-infrared photoluminescence from Ge nanocrystals in SiO2 matrices. J Lumin 87–89:457–459. doi:10.1016/S0022-2313(99)00486-X

    Article  Google Scholar 

  • Kim S, Choi SH, Park CJ, Cho KH, Cho HY, Elliman RG (2006) Structural and optical characterization of Ge nanocrystals showing large nonvolatile memories in metal-oxide-semiconductor structures. J Korean Phys Soc 49:959–962. doi:10.3938/jkps.49.959

    CAS  Google Scholar 

  • Kolobov AV, Wei SQ, Yan WS, Oyanagi H, Maeda Y, Tanaka K (2003) Formation of Ge nanocrystals embedded in a SiO2 matrix: transmission electron microscopy, X-ray absorption, and optical studies. Phys Rev B 67:195314. doi:10.1103/PhysRevB.67.195314

    Article  Google Scholar 

  • Lieten RR, Bustillo K, Smets T, Simoen E, Ager JW, Haller EE, Locquet JP (2012) Photoluminescence of bulk germanium. Phys Rev B 86:035204. doi:10.1103/PhysRevB.86.035204

    Article  Google Scholar 

  • Maeda Y, Tsukamoto N, Yazawa Y, Kanemitsu Y, Masumoto Y (1991) Visible photoluminescence of Ge microcrystals embedded in SiO2 glassy matrices. Appl Phys Lett 59:3168–3170. doi:10.1063/1.105773

    Article  CAS  Google Scholar 

  • Mestanza SNM, Rodriguez E, Frateschi NC (2006) The effect of Ge implantation dose on the optical properties of Ge nanocrystals in SiO2. Nanotechnology 17:4548–4553. doi:10.1088/0957-4484/17/18/004

    Article  CAS  Google Scholar 

  • Nataraj L, Xu F, Cloutier SG (2010) Direct-bandgap luminescence at room temperature from highly-strained Germanium nanocrystals. Opt Express 18:7085–7091. doi:10.1364/OE.18.007085

    Article  CAS  Google Scholar 

  • Nilsson G, Nelin G (1971) Phonon dispersion relations in Ge at 80°K. Phys Rev B 3:364–369. doi:10.1103/PhysRevB.3.364

    Article  Google Scholar 

  • Niquet YM, Allan G, Delerue C, Lannoo M (2000) Quantum confinement in germanium nanocrystals. Appl Phys Lett 77:1182–1184. doi:10.1063/1.1289659

    Article  CAS  Google Scholar 

  • Ou H, Ou Y, Liu C, Berg RW, Rottwitt K (2011) Formation and characterization of varied size germanium nanocrystals by electron microscopy, Raman spectroscopy, and photoluminescence. Opt Mater Express 1:643–651. doi:10.1364/OME.1.000643

    Article  CAS  Google Scholar 

  • Pinto SRC, Rolo AG, Chahboun A, Kashtiban RJ, Bangert U, Gomes MJM (2010) Raman study of stress effect on Ge nanocrystals embedded in Al2O3. Thin Solid Films 518:5378–5381. doi:10.1016/j.tsf.2010.03.035

    Article  CAS  Google Scholar 

  • Pinto SRC, Rolo AG, Buljan M, Chahboun A, Bernstorff S, Barradas NP, Alves E, Kashtiban RJ, Bangert U, Gomes MJM (2011) Low temperature fabrication of layered self-organized Ge clusters by RF-sputtering. Nanoscale Res Lett 6:341. doi:10.1186/1556-276X-6-341

    Article  Google Scholar 

  • Richter H, Wang ZP, Ley L (1981) The one phonon Raman spectrum in microcrystalline silicon. Solid State Commun 39:625–629. doi:10.1016/0038-1098(81)90337-9

    Article  CAS  Google Scholar 

  • Rodríguez A, Rodríguez T, Prieto ÁC, Jiménez J, Kling A, Ballesteros C, Sangrador J (2010) Crystallization of amorphous Si0.6Ge0.4 nanoparticles embedded in SiO2: crystallinity versus compositional stability. J Electron Mater 39:1194–1202. doi:10.1007/s11664-010-1254-9

    Article  Google Scholar 

  • Roodenko K, Goldthorpe IA, McIntyre PC, Chabal YJ (2010) Modified phonon confinement model for Raman spectroscopy of nanostructured materials. Phys Rev B 82:115210. doi:10.1103/PhysRevB.82.115210

    Article  Google Scholar 

  • Sahin D, Yildiz I, Gencer AI, Aygun G, Slaoui A, Turan R (2010) Evolution of SiO2/Ge/HfO2(Ge) multilayer structure during high temperature annealing. Thin Solid Films 518:2365–2369. doi:10.1016/j.tsf.2009.09.156

    Article  CAS  Google Scholar 

  • Sasaki Y, Horie C (1993) Resonant Raman study of phonon states in gas-evaporated Ge small particles. Phys Rev B 47:3811–3818. doi:10.1103/PhysRevB.47.3811

    Article  CAS  Google Scholar 

  • Serincan U, Kartopu G, Guennes A, Finstad TG, Turan R, Ekinci Y, Bayliss SC (2004) Characterization of Ge nanocrystals embedded in SiO2 by Raman spectroscopy. Semicond Sci Technol 19:247–251. doi:10.1088/0268-1242/19/2/021

    Article  CAS  Google Scholar 

  • Srinivasa Rao N, Dhamodaran S, Pathak AP, Kulriya PK, Mishra YK, Singh F, Kabiraj D, Pivin JC, Avasthi DK (2007) Structural studies of Ge nanocrystals embedded in SiO2 matrix. Nucl Instrum Meth Phys Res B 264:249–253. doi:10.1016/j.nimb.2007.08.094

    Article  CAS  Google Scholar 

  • Stavarache I, Lepadatu AM, Gheorghe NG, Costescu RM, Stan GE, Marcov D, Slav A, Iordache G, Stoica TF, Iancu V, Teodorescu VS, Teodorescu CM, Ciurea ML (2011) Structural investigations of Ge nanoparticles embedded in an amorphous SiO2 matrix. J Nanopart Res 13:221–232. doi:10.1007/s11051-010-0021-4

    Article  CAS  Google Scholar 

  • Stavarache I, Lepadatu AM, Maraloiu AV, Teodorescu VS, Ciurea ML (2012) Structure and electrical transport in films of Ge nanoparticles embedded in SiO2 matrix. J Nanopart Res 14:930. doi:10.1007/s11051-012-0930-5

    Article  Google Scholar 

  • Stavarache I, Lepadatu AM, Stoica T, Ciurea ML (2013) Annealing temperature effect on structure and electrical properties of films formed of Ge nanoparticles in SiO2. Appl Surf Sci. doi:10.1016/j.apsusc.2013.08.031

  • Stoica T, Sutter E (2006) Ge dots embedded in SiO2 obtained by oxidation of Si/Ge/Si nanostructures. Nanotechnology 17:4912–4916. doi:10.1088/0957-4484/17/19/022

    Article  CAS  Google Scholar 

  • Takeoka S, Fujii M, Hayashi S, Yamamoto K (1998) Size-dependent near-infrared photoluminescence from Ge nanocrystals embedded in SiO2 matrices. Phys Rev B 58:7921–7925. doi:10.1103/PhysRevB.58.7921

    Article  CAS  Google Scholar 

  • Wan Z, Huang S, Green MA, Conibeer G (2011) Rapid thermal annealing and crystallization mechanisms study of silicon nanocrystal in silicon carbide matrix. Nanoscale Res Lett 6:129. doi:10.1186/1556-276X-6-129

    Article  Google Scholar 

  • Wang W, Wang K, Han D, Poudel B, Wang X, Wang DZ, Zeng B, Ren ZF (2007) Exciton states and photoluminescence in Ge quantum dots. Nanotechnology 18:075707. doi:10.1088/0957-4484/18/29/295401

    Article  Google Scholar 

  • Wellner A, Paillard V, Bonafos C, Coffin H, Claverie A, Schmidt B, Heinig KH (2003) Stress measurements of germanium nanocrystals embedded in silicon oxide. J Appl Phys 94:5639–5642. doi:10.1063/1.1617361

    Article  CAS  Google Scholar 

  • Wu RS, Luo XF, Yuan CL, Zhang ZR, Yu JB (2009) Dielectric matrix imposed stress strain effect on photoluminescence of Ge nanocrystals. Physica E 41:1403–1405. doi:10.1016/j.ssc.2009.01.031

    Article  CAS  Google Scholar 

  • Xiao H, Huang S, Zheng J, Xie G, Xie Y (2009) Optical characteristics of Si/SiO2 multilayers prepared by magnetron sputtering. Microelectron Eng 86:2342–2346. doi:10.1016/j.mee.2009.04.014

    Article  CAS  Google Scholar 

  • Ye CN, Wu XM, Tang NY, Zhuge LJ, Yao WG, Chen J, Dong YM, Yu YH (2002) Origin of photoluminescence peaks in Ge–SiO2 thin films. Sci Technol Adv Mater 3:257–260. doi:10.1016/S1468-6996(02)00024-4

    Article  CAS  Google Scholar 

  • Zhang B, Shrestha S, Green MA, Conibeer G (2010a) Size controlled synthesis of Ge nanocrystals in SiO2 at temperatures below 400 °C using magnetron sputtering. Appl Phys Lett 96:261901. doi:10.1063/1.3457864

    Article  Google Scholar 

  • Zhang B, Shrestha S, Aliberti P, Green MA, Conibeer G (2010b) Characterisation of size-controlled and red luminescent Ge nanocrystals in multilayered superlattice structure. Thin Solid Films 518:5483–5487. doi:10.1016/j.tsf.2010.04.024

    Article  CAS  Google Scholar 

  • Zhang B, Yao Y, Patterson R, Shrestha S, Green MA, Conibeer G (2011) Electrical properties of conductive Ge nanocrystal thin films fabricated by low temperature in situ growth. Nanotechnology 22:125204. doi:10.1088/0957-4484/22/12/125204

    Article  CAS  Google Scholar 

  • Zi J, Zhang K, Xie X (1997) Comparison of models for Raman spectra of Si nanocrystals. Phys Rev B 55:9263–9266. doi:10.1103/PhysRevB.55.9263

    Article  CAS  Google Scholar 

  • Zschintzsch M, Jeutter NM, von Borany J, Krause M, Mücklich A (2010) Reactive dc magnetron sputtering of (GeO x –SiO2) superlattices for Ge nanocrystal formation. J Appl Phys 107:034306. doi:10.1063/1.3276184

    Article  Google Scholar 

  • Zschintzsch M, Sahle CJ, von Borany J, Sternemann C, Mücklich A, Nyrow A, Schwamberger A, Tolan M (2011a) Ge–Si–O phase separation and Ge nanocrystal growth in Ge:SiO x /SiO2 multilayers—a new dc magnetron approach. Nanotechnology 22:485303. doi:10.1088/0957-4484/22/48/485303

    Article  Google Scholar 

  • Zschintzsch M, von Borany J, Jeutter NM, Mücklich A (2011b) Stacked Ge nanocrystals with ultrathin SiO2 separation layers. Nanotechnology 22:465302. doi:10.1088/0957-4484/22/46/465302

    Article  Google Scholar 

Download references

Acknowledgments

This study was performed partially under the auspices of the National Research Council—Executive Agency for Higher Education, Research, Development and Innovation Funding (CNCS—UEFISCDI), by funding projects No. PN II-PT-PCCA-9/2012 and No. PN II-RU-PD-2011/3/0094.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdalena Lidia Ciurea.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lepadatu, AM., Stoica, T., Stavarache, I. et al. Dense Ge nanocrystal layers embedded in oxide obtained by controlling the diffusion–crystallization process. J Nanopart Res 15, 1981 (2013). https://doi.org/10.1007/s11051-013-1981-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1981-y

Keywords

Navigation