Skip to main content
Log in

Effect of surface coating composition on quantum dot mobility in porous media

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Quantum dots (QDs) have received considerable attention due to their unique optical and electrical properties. Although substantial research has focused on the potential applications and toxicological impacts of QDs, far less effort has been directed toward understanding their fate and transport in the environment. In this work, the effect of four coatings, polyethylene glycol functionalized polymer (PEGP), carboxyl derivatized polymer (COOHP), linoleic acid (LA), and polyacrylic acid-octylamine (PAA-OA), on the transport and retention of QDs in porous media were evaluated under environmentally relevant conditions. Aqueous QD suspensions (ca. 10 nM) were introduced into water-saturated columns packed with 40–50 mesh Ottawa sand at a pore-water velocity of 7.6 m/day. At an ionic strength (IS) of 3 mM and pH of 7, PEGP-coated QDs were completely retained within the column, while more than 60 % of COOHP-coated QDs were transported through a column run under identical conditions. When PAA-OA and LA were used as coatings, effluent QD recoveries increased to more than 65 and 89 % of the injected mass, respectively. Additionally, a decrease in pH from 9.5 to 5.0, or an increase of IS from 0 to 30 mM reduced the eluted mass of PAA-OA-coated QDs by more than 2 and 15 times, respectively. The relative mobility of coated QDs (LA > PAA-OA > COOHP > PEGP) was consistent with total interaction energy profiles between QDs and sand surfaces calculated based on Derjaguin–Landau–Verwey–Overbeek (DLVO) theory. At an IS of 3 mM (NaCl) and pH 7, a linear correlation was obtained between the fraction of eluted QDs and the magnitude of the primary interaction energy barrier. These findings demonstrate the strong dependence of QD transport on coating type and indicate that interaction energies based on DLVO theory can be used to predict the relative mobility of QDs in porous media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Asenjo JA, Andrews BA (2011) Aqueous two-phase systems for protein separation: a perspective. J Chromatogr A 1218:8826–8835

    Article  CAS  Google Scholar 

  • Bottrill M, Green M (2011) Some aspects of quantum dot toxicity. Chem Commun 47:7039–7050

    Article  CAS  Google Scholar 

  • Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013–2016

    Article  CAS  Google Scholar 

  • Byrd TL, Walz JY (2005) Interaction force profiles between Cryptosporidium parvum oocysts and silica surfaces. Environ Sci Technol 39:9574–9582

    Article  CAS  Google Scholar 

  • Cerda CM (1988) Mobilization of quartz fines in porous-media. Clays Clay Miner 36:491–497

    Article  CAS  Google Scholar 

  • Egerton RF, Li P, Malac M (2004) Radiation damage in the TEM and SEM. Micron 35:399–409

    Article  CAS  Google Scholar 

  • Elimelech M, Omelia CR (1990) Effect of particle-size on collision efficiency in the deposition of Brownian particles with electrostatic energy barriers. Langmuir 6:1153–1163

    Article  CAS  Google Scholar 

  • Fritz G, Schadler V, Willenbacher N, Wagner NJ (2002) Electrosteric stabilization of colloidal dispersions. Langmuir 18:6381–6390

    Article  CAS  Google Scholar 

  • Fruijtier-Polloth C (2005) Safety assessment on polyethylene glycols (PEGs) and their derivatives as used in cosmetic products. Toxicology 214:1–38

    Article  Google Scholar 

  • Gao XH, Cui YY, Levenson RM, Chung LWK, Nie SM (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22:969–976

    Article  CAS  Google Scholar 

  • Hiemenz PC, Rajagopalan R (1997) Principles of colloid and surface chemistry, 3rd edn. Marcel Dekker, Inc., New York

    Google Scholar 

  • Huang HC, Barua S, Sharma G, Dey SK, Rege K (2011) Inorganic nanoparticles for cancer imaging and therapy. J Control Release 155:344–357

    Article  CAS  Google Scholar 

  • Lees EE, Gunzburg MJ, Nguyen TL, Howlett GJ, Rothacker J, Nice EC, Clayton AHA, Mulvaney P (2008) Experimental determination of quantum dot size distributions, ligand packing densities, and bioconjugation using analytical ultracentrifugation. Nano Lett 8:2883–2890

    Article  CAS  Google Scholar 

  • Lerner RN, Lu QY, Zeng HB, Liu Y (2012) The effects of biofilm on the transport of stabilized zerovalent iron nanoparticles in saturated porous media. Water Res 46:975–985

    Article  CAS  Google Scholar 

  • Lewinski NA, Zhu HG, Jo HJ, Pham D, Kamath RR, Ouyang CR, Vulpe CD, Colvin VL, Drezek RA (2010) Quantification of water solubilized CdSe/ZnS quantum dots in Daphnia magna. Environ Sci Technol 44:1841–1846

    Article  CAS  Google Scholar 

  • Li YS, Wang YG, Pennell KD, Abriola LM (2008) Investigation of the transport and deposition of fullerene (C60) nanoparticles in quartz sands under varying flow conditions. Environ Sci Technol 42:7174–7180

    Article  CAS  Google Scholar 

  • Lim J, Bae WK, Kwak J, Lee S, Lee C, Char K (2012) Perspective on synthesis, device structures, and printing processes for quantum dot displays. Opt Mater Express 2:594–628

    Article  Google Scholar 

  • Mattoussi H, Mauro JM, Goldman ER, Anderson GP, Sundar VC, Mikulec FV, Bawendi MG (2000) Self-assembly of CdSe–ZnS quantum dot bioconjugates using an engineered recombinant protein. J Am Chem Soc 122:12142–12150

    Article  CAS  Google Scholar 

  • Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307:538–544

    Article  CAS  Google Scholar 

  • Min YJ, Akbulut M, Kristiansen K, Golan Y, Israelachvili J (2008) The role of interparticle and external forces in nanoparticle assembly. Nat Mater 7:527–538

    Article  CAS  Google Scholar 

  • Morris J, Willis J (2007) U.S. Environmental Protection Agency nanotechnology white paper EPA 100/B-07/001, Washington DC

  • Navarro DA, Banerjee S, Watson DF, Aga DS (2011) Differences in soil mobility and degradability between water-dispersible cdse and cdse/zns quantum dots. Environ Sci Technol 45:6343–6349

    Article  CAS  Google Scholar 

  • Petosa AR, Jaisi DP, Quevedo IR, Elimelech M, Tufenkji N (2010) Aggregation and deposition of engineered nanomaterials in aquatic environments: role of physicochemical interactions. Environ Sci Technol 44:6532–6549

    Article  CAS  Google Scholar 

  • Phenrat T, Saleh N, Sirk K, Kim HJ, Tilton RD, Lowry GV (2008) Stabilization of aqueous nanoscale zerovalent iron dispersions by anionic polyelectrolytes: adsorbed anionic polyelectrolyte layer properties and their effect on aggregation and sedimentation. J Nanopart Res 10:795–814

    Article  CAS  Google Scholar 

  • Phenrat T, Cihan A, Kim HJ, Mital M, Illangasekare T, Lowry GV (2010) Transport and deposition of polymer-modified fe-0 nanoparticles in 2-d heterogeneous porous media: effects of particle concentration, fe-0 content, and coatings. Environ Sci Technol 44:9086–9093

    Article  CAS  Google Scholar 

  • Pons T, Medintz IL, Mattoussi H (2006) Hydrodynamic sizes of functional hydrophilic QDs. In: Proceedings of SPIE, vol 6096, colloidal quantum dots for biomedical applications, 60961H. doi:10.1117/12.641767

  • Pradip, Maltesh C, Somasundaran P, Kulkarni RA, Gundiah S (1991) Polymer-polymer complexation in dilute aqueous-solutions—poly(acrylic acid)-poly(ethylene oxide) and poly(acrylic acid)-poly(vinylpyrrolidone). Langmuir 7:2108–2111

  • Prakash A, Zhu HG, Jones CJ, Benoit DN, Ellsworth AZ, Bryant EL, Colvin VL (2009) Bilayers as phase transfer agents for nanocrystals prepared in nonpolar solvents. ACS Nano 3:2139–2146

    Article  CAS  Google Scholar 

  • Quevedo IR, Tufenkji N (2009) Influence of solution chemistry on the deposition and detachment kinetics of a CdTe quantum dot examined using a quartz crystal microbalance. Environ Sci Technol 43:3176–3182

    Article  CAS  Google Scholar 

  • Quevedo IR, Tufenkji N (2012) Mobility of functionalized quantum dots and a model polystyrene nanoparticle in saturated quartz sand and loamy sand. Environ Sci Technol 46:4449–4457

    Article  CAS  Google Scholar 

  • Rabani E (2002) An interatomic pair potential for cadmium selenide. J Chem Phys 116:258–262

    Article  CAS  Google Scholar 

  • Radich JG, Dwyer R, Kamat PV (2011) Cu2S reduced graphene oxide composite for high-efficiency quantum dot solar cells. Overcoming the redox limitations of s-2(-)/s-n(2-) at the counter electrode. J Phys Chem Lett 2:2453–2460

    Article  CAS  Google Scholar 

  • Ryman-Rasmussen JP, Riviere JE, Monteiro-Riviere NA (2007) Surface coatings determine cytotoxicity and irritation potential of quantum dot nanoparticles in epidermal keratinocytes. J Invest Dermatol 127:143–153

    Article  CAS  Google Scholar 

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  Google Scholar 

  • Sharma MM, Kuo JF, Yen TF (1987) Further investigation of the surface-charge properties of oxide surfaces in oil-bearing sands and sandstones. J Colloid Interface Sci 115:9–16

    Article  CAS  Google Scholar 

  • Simunek J, Sejna M, Saito H, Sakai M, Van Genuchten MT (2005) The HYDRUS-1D software package for simulating the one-dimensional movement of water, heat, and multiple solutes in variably-saturated media. Software manual. University of California Riverside, Riverside

    Google Scholar 

  • Smith AM, Duan HW, Rhyner MN, Ruan G, Nie SM (2006) A systematic examination of surface coatings on the optical and chemical properties of semiconductor quantum dots. Phys Chem Chem Phys 8:3895–3903

    Article  CAS  Google Scholar 

  • Smyder JA, Krauss TD (2011) Coming attractions for semiconductor quantum dots. Mater Today 14:382–387

    Article  Google Scholar 

  • Song JE, Phenrat T, Marinakos S, Xiao Y, Liu J, Wiesner MR, Tilton RD, Lowry GV (2011) Hydrophobic interactions increase attachment of gum Arabic- and PVP-coated Ag nanoparticles to hydrophobic surfaces. Environ Sci Technol 45:5988–5995

    Article  CAS  Google Scholar 

  • Sultana S, Khan MR, Kumar M, Kumar S, Ali M (2013) Nanoparticles-mediated drug delivery approaches for cancer targeting: a review. J Drug Target 21:107–125

    Article  CAS  Google Scholar 

  • Tan Y, Gannon JT, Baveye P, Alexander M (1994) Transport of bacteria in an aquifer sand: experiments and model simulations. Water Resour Res 30:3243–3252

    Article  Google Scholar 

  • Toride N, Leij FJ, van Genuchten MT (1999) The CXTFIT code for estimating transport parameters from laboratory or field tracer experiments, Version 2.1 Research report No. 137

  • Torkzaban S, Kim Y, Mulvihill M, Wan JM, Tokunaga TK (2010) Transport and deposition of functionalized CdTe nanoparticles in saturated porous media. J Contam Hydrol 118:208–217

    Article  CAS  Google Scholar 

  • Torkzaban S, Wan J, Tokunaga TK, Bradfor SA (2012) Impacts of bridging complexation on the transport of surface-modified nanoparticles in saturated sand. J Contam Hydrol 136–137:86–95

    Article  Google Scholar 

  • Uyusur B, Darnault CJG, Snee PT, Koken E, Jacobson AR, Wells RR (2010) Coupled effects of solution chemistry and hydrodynamics on the mobility and transport of quantum dot nanomaterials in the vadose zone. J Contam Hydrol 118:184–198

    Article  CAS  Google Scholar 

  • Vincent B (1973) The van der Waals attraction between colloid particles having adsorbed layers. II. Calculation of interaction curves. J Colloid Interface Sci 42:270–285

    Article  CAS  Google Scholar 

  • Wang YG, Li YS, Fortner JD, Hughes JB, Abriola LM, Pennell KD (2008) Transport and retention of nanoscale C-60 aggregates in water-saturated porous media. Environ Sci Technol 42:3588–3594

    Article  CAS  Google Scholar 

  • Wang YG, Li YS, Kim H, Walker SL, Abriola LM, Pennell KD (2010) Transport and retention of fullerene nanoparticles in natural soils. J Environ Qual 39:1925–1933

    Article  CAS  Google Scholar 

  • Wu J, Mangham SC, Reddy VR, Manasreh MO, Weaver BD (2012) Surface plasmon enhanced intermediate band based quantum dots solar cell. Sol Energy Mater Sol Cells 102:44–49

    Article  CAS  Google Scholar 

  • Xu WM, Liu LZ, Brown NJ, Christian S, Hornby D (2012) Quantum dot- conjugated anti-grp78 scfv inhibits cancer growth in mice. Molecules 17:796–808

    Article  CAS  Google Scholar 

  • Xue B, Deng DW, Cao J, Liu F, Li X, Akers W, Achilefu S, Gu YQ (2012) Synthesis of NAC capped near infrared-emitting CdTeS alloyed quantum dots and application for in vivo early tumor imaging. Dalton Trans 41:4935–4947

    Article  CAS  Google Scholar 

  • Yao KM, Habibian MM, Omelia CR (1971) Water and waste water filtration—concepts and applications. Environ Sci Technol 5:1105–1112

    Article  CAS  Google Scholar 

  • Zhu HG, Prakash A, Benoit DN, Jones CJ, Colvin VL (2010) Low temperature synthesis of ZnS and CdZnS shells on CdSe quantum dots. Nanotechnology 21:255604–255614

    Article  Google Scholar 

Download references

Acknowledgments

We thank Martin Hunter and Dr. David Kaplan of Tufts University for assistance with fluorescence imaging. This research was funded by the Advanced Energy Consortium (AEC) as part of Award No. BEG 08-01. Quantum dot imaging was performed at the Harvard University Center for Nanoscale Systems (CNS), a member of the National Nanotechnology Infrastructure Network (NNIN), which is sponsored by the National Science Foundation under NSF Award No. ECS-0335765.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kurt D. Pennell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Zhu, H., Becker, M.D. et al. Effect of surface coating composition on quantum dot mobility in porous media. J Nanopart Res 15, 1805 (2013). https://doi.org/10.1007/s11051-013-1805-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1805-0

Keywords

Navigation