Skip to main content
Log in

Pseudo and true visible light photocatalytic activity of nanotube titanic acid/graphene composites

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Nanotube titanic acid/graphene (NTA/Gr) composites were prepared by an easy hydrothermal treatment of graphene oxide (GO) and NTA in a mixed solvent of ethanol–water. As-prepared NTA/Gr composites and GO were characterized by means of Fourier transform infrared spectrometry, X-ray diffraction, diffuse-reflection spectrometry, thermal analysis, and transmission electron microscopy. Besides, the photocatalytic activities of as-prepared NTA/Gr composites were evaluated by monitoring the degradation of methyl orange (MO) under visible light irradiation. It has been found that extending hydrothermal reaction time (24 h instead of 3 h) leads to great changes in the morphology and crystal structure of as-prepared composites. Namely, the orthorhombic NTA (ca. 10 nm in diameter) in the composite transformed to anatase TiO2 particle (ca. 20–30 nm in diameter) while the Gr sheets (with micrometers-long wrinkles) in it transformed to a few Gr fragments (ca. 50 nm in diameter). Correspondingly, the NTA/Gr composite transformed to titanium dioxide/graphene (TiO2/Gr) composite. In the meantime, pure GO only has adsorption effect but it has no photocatalytic activity in the visible light region. Nevertheless, increasing Gr ratio results in enhanced visible light absorption capability and photocatalytic activity of NTA/Gr composites as well as the TiO2/Gr composites. This demonstrates that the true visible light photocatalytic activity of NTA/Gr composites as well as the TiO2/Gr composites for the degradation of MO is not as excellent as expected, and their high apparent activity is attributed to the strong adsorption of MO on the composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akhavan O, Ghaderi E (2009) Photocatalytic reduction of graphene oxide nanosheets on TiO2 thin film for photoinactivation of bacteria in solar light irradiation. J Phys Chem C 113:20214–20220

    Article  Google Scholar 

  • Alexander AB (2011) Thermal properties of graphene and nanostructured carbon materials. Nat Mater 10:569–581

    Article  Google Scholar 

  • Anpo M, Takeuchi M (2003) The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation. J Catal 216:505–516

    Article  Google Scholar 

  • Bahnemann DW, Moenig J, Chapman R (1987) Efficient photocatalysis of the irreversible one-electron and two-electron reduction of halothane on platinized colloidal titanium dioxide in aqueous suspension. J Phys Chem 91:3782–3788

    Article  Google Scholar 

  • Chen XB, Burda C (2008) The electronic origin of the visible-light absorption properties of C-, N- and S-doped TiO2 nanomaterials. J Am Chem Soc 130:5018–5019

    Article  Google Scholar 

  • Chen XB, Liu L, Yu PY, Mao SS (2011) Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331:746–750

    Article  Google Scholar 

  • Eda G, Chhowalla M (2011) Graphene patchwork. ACS Nano 5:4265–4268

    Article  Google Scholar 

  • Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–39

    Article  Google Scholar 

  • Fujishima A, Zhang X, Tryk DA (2008) TiO2 photocatalysis and related surface phenomena. Surf Sci Rep 63:515–582

    Article  Google Scholar 

  • Gao YY, Pu XP, Zhang DF, Ding GQ, Shao X, Ma J (2012) Combustion synthesis of graphene oxide-TiO2 hybrid materials for photodegradation of methyl orange. Carbon 50:4093–4101

    Article  Google Scholar 

  • Geim AK (2009) Graphene: status and prospects. Science 324:1530–1534

    Article  Google Scholar 

  • Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191

    Article  Google Scholar 

  • Hong XT, Wang ZP, Cai WM, Lu F, Zhang J, Yang YZ, Ma N, Liu YJ (2005) Visible-light-activated nanoparticle photocatalyst of iodine-doped titanium dioxide. Chem Mater 179:1548–1622

    Article  Google Scholar 

  • Hu HQ, Liu Y, Wang QN, Zhao J, Liang YR (2011) A study on the preparation of highly conductive graphene. Mater Lett 65:2582–2584

    Article  Google Scholar 

  • Huang X, Yin ZY, Wu SX, Qi XY, He QY, Zhang QC, Yan QY, Boey F, Zhang H (2010) Graphene-based materials: synthesis, characterization, properties, and applications. Small 7:1876–1902

    Article  Google Scholar 

  • Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339

    Article  Google Scholar 

  • In S, Orlov A, Berg R, García F, Pedrosa-Jimenez S, Tikhov MS, Wright DS, Lambert RM (2007) Effective visible light-activated B-doped and B, N-codoped TiO2 photocatalyst. J Am Chem Soc 129:13790–13791

    Article  Google Scholar 

  • Khan SUM, Al-Shahry M, Ingler WB Jr (2002) Efficient photochemical water splitting by a chemically modified n-TiO2. Science 297:2243–2245

    Article  Google Scholar 

  • Li D, Haneda H, Labhsetwar NK, Hishita S, Ohashi N (2005) Visible-light-driven photocatalysis on fluorine-doped TiO2 powders by the creation of surface oxygen vacancies. Chem Phys Lett 401:579–584

    Article  Google Scholar 

  • Liu G, Zhao YN, Sun CH, Li F, Lu GQ, Cheng HM (2008) Synergistic effects of B/N doping on the visible-light photocatalytic activity of mesoporous TiO2. Angew Chem Int Ed Engl 47:4516–4520

    Article  Google Scholar 

  • Liu CB, Teng YR, Liu RH, Luo SL, Tang YH, Chen LY, Cai QY (2011) Fabrication of graphene films on TiO2 nanotube arrays for photocatalytic application. Carbon 49:5312–5320

    Article  Google Scholar 

  • Mahmoodi NM, Limaee NY, Arami M, Borhany S, Mohammad-Taheri M (2007) Nanophotocatalysis using nanoparticles of titania: mineralization and finite element modeling of solophenyl dye decolorization. J Photochem Photobiol A 189:1–6

    Article  Google Scholar 

  • Nethravathi C, Rajamathi M (2008) Chemically modified graphene sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide. Carbon 46:1994–1998

    Article  Google Scholar 

  • Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  Google Scholar 

  • O’Regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740

    Article  Google Scholar 

  • Park JH, Kim S, Bard AJ (2006) Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. Nano Lett 6:24–28

    Article  Google Scholar 

  • Prezhdo OV, Kamat PV, Schatz GC (2011) Virtual issue: graphene and functionalized graphene. J Phys Chem C 115:3195–3197

    Article  Google Scholar 

  • Ren WJ, Ai ZH, Jia FL, Zhang LZ, Fan XX, Zou ZG (2007) Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO2. Appl Catal B 69:138–144

    Article  Google Scholar 

  • Si YC, Samulski ET (2008) Synthesis of water soluble graphene. Nano Lett 8:1679–1682

    Article  Google Scholar 

  • Silva CG, Faria JL (2010) Photocatalytic oxidation of benzene derivatives in aqueous suspensions: synergic effect induced by the introduction of carbon nanotubes in a TiO2 matrix. Appl Catal B 101:81–89

    Article  Google Scholar 

  • Stankovich S, Dikin D, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006a) Graphene-based composite materials. Nature 442:282–286

    Article  Google Scholar 

  • Stankovich S, Piner RD, Nguyen SBT, Ruoff RS (2006b) Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon 44:3342–3347

    Article  Google Scholar 

  • Sun XM, Li YD (2003) Synthesis and characterization of ion-exchangeable titanate nanotubes. Chem Eur J 9:2229–2238

    Article  Google Scholar 

  • Valentin CD, Pacchioni G, Selloni A, Livraghi S, Giamello E (2005) Characterization of paramagnetic species in N-doped TiO2 powders by EPR spectroscopy and DFT calculations. J Phys Chem B 109:11414–11419

    Article  Google Scholar 

  • Wang LS, Xiao MW, Huang XJ, Wu YD (2009) Synthesis, characterization, and photocatalytic activities of titanate nanotubes surface-decorated by zinc oxide nanoparticles. J Hazard Mater 161:49–54

    Article  Google Scholar 

  • Wang XD, Pan H, Xue XX, Qian JJ, Yu LG, Yang JJ, Zhang ZJ (2011) Preparation and characterization of titanate nanotubes/carbon composites. Mater Chem Phys 130:827–830

    Article  Google Scholar 

  • Woan K, Pyrgiotakis G, Sigmund W (2009) Photocatalytic carbon-nanotube-TiO2 composites. Adv Mater 21:2233–2239

    Article  Google Scholar 

  • Wu JM, Antonietti M, Gross S, Bauer M, Smarsly BM (2008) Ordered mesoporous thin films of rutile TiO2 nanocrystals mixed with amorphous Ta2O5. ChemPhysChem 9:748–757

    Article  Google Scholar 

  • Xiang GL, Wang YG, Wu D, Li TY, He J, Li J, Wang X (2012) Size-dependent surface activity of rutile and anatase TiO2 nanocrystals: facile surface modification and enhanced photocatalytic performance. Chem Eur J 18:4759–4765

    Article  Google Scholar 

  • Xu YX, Bai H, Lu GW, Li C, Shi GQ (2008) Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J Am Chem Soc 130:5856–5857

    Article  Google Scholar 

  • Yang JJ, Jin ZS, Wang XD, Li W, Zhang JW, Zhang SL, Guo XY, Zhang ZJ (2003) Study on composition, structure and formation process of nanotube Na2Ti2O4(OH)2. Dalton Trans 3898–3901

  • Zhang XW, Zhou MH, Lei LC (2005) Preparation of photocatalytic TiO2 coatings of nanosized particles on activated carbon by AP-MOCVD. Carbon 43:1700–1708

    Article  Google Scholar 

  • Zhang H, Lv X, Li Y, Wang Y, Li J (2010) P25-graphene composite as a high performance photocatalyst. ACS Nano 4:380–386

    Article  Google Scholar 

  • Zhao W, Ma W, Chen C, Zhao J, Shuai Z (2004) Efficient degradation of toxic organic pollutants with Ni2O3/TiO2−x B x under visible irradiation. J Am Chem Soc 126:4782–4783

    Article  Google Scholar 

  • Zhao L, Chen XF, Wang XC, Zhang YJ, Wei W, Sun YH, Antonietti M, Titirici MM (2010) One-step solvothermal synthesis of a carbon@TiO2 dyade structure effectively promoting visible-light photocatalysis. Adv Mater 22:3317–3321

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial support by the Key Laboratory Foundation of Henan Province (122300413205), the Postdoctoral Scientific Research Foundation of Henan University (BH2011054) and the National Natural Science Foundation of China (Grant Nos. 21203054 and 21103042).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaodong Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 279 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Liu, X., Xue, X. et al. Pseudo and true visible light photocatalytic activity of nanotube titanic acid/graphene composites. J Nanopart Res 15, 1764 (2013). https://doi.org/10.1007/s11051-013-1764-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1764-5

Keywords

Navigation