Skip to main content
Log in

Synthesis and evaluation of c(RGDyK)-coupled superparamagnetic iron oxide nanoparticles for specific delivery of large amount of doxorubicin to tumor cell

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

We synthesized c(RGDyK)-coupled superparamagnetic iron oxide nanoparticles for specific delivery of large amount of doxorubicin to α v β 3 integrin rich tumor cells (RDSP) by using a novel triplex hands coupling reagent tris-succinimidyl aminotriacetate and evaluated their structure, drug release, target cell uptake, and cytotoxic effects. Besides the high-trapping efficient for magnetic targeting, RDSP also has integrin α v β 3 targeting property. Moreover, RDSP shows a high-drug load ratio and can carry a large amount of doxorubicin to the target tumor cells. Compare with those of doxorubicin coupled DSP without peptide c(RGDyK) modification, RDSP shows an increase uptake by target tumor cells and stronger tumor cell cytotoxicity. This investigate provides an idiographic way for targeted delivery therapeutic agents to tumors with high efficiency and low-carrier toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alexiou C, Arnold W, Klein RJ, Parak FG, Hulin P, Bergemann C, Erhardt W, Wagenpfeil S, Lubbe AS (2000) Locoregional cancer treatment with magnetic drug targeting. Cancer Res 60:6641–6648

    CAS  Google Scholar 

  • Allen TM, Cullis PR (2004) Drug delivery systems: entering the mainstream. Science 303:1818–1822

    Article  CAS  Google Scholar 

  • Andhariya N, Chudasama B, Mehta RV, Upadhyay RV (2011) Biodegradable thermoresponsive polymeric magnetic nanoparticles: a new drug delivery platform for doxorubicin. J Nanopart Res 13:1677–1688

    Article  CAS  Google Scholar 

  • Arruebo M, Fernández-Pacheco R, Ibarra MR, Santamaría J (2007) Magnetic nanoparticles for drug delivery. Nano Today 2:22–32

    Article  Google Scholar 

  • Bliss C (1935) The calculation of the dose-mortality curve. Ann Appl Biol 22:134–167

    Article  CAS  Google Scholar 

  • Brulé S, Levy M, Wilhelm C, Letourneur D, Gazeau F, Ménager C, Visage CL (2011) Doxorubicin release triggered by alginate embedded magnetic nanoheaters: a combined therapy. Adv Mater 23:787–790

    Article  Google Scholar 

  • Du WJ, Xu ZQ, Nystrom AM, Zhang K, Leonard JR, Wooley KL (2008) 19F- and fluorescently labeled micelles as nanoscopic assemblies for chemotherapeutic delivery. Bioconjugate Chem 19:2492–2498

    Article  CAS  Google Scholar 

  • Ferrara N, Kerbel RS (2005) Angiogenesis as a therapeutic target. Nature 438:967–974

    Article  CAS  Google Scholar 

  • Gaihre B, Khilb MS, Lee DR, Kimb HY (2009) Gelatin-coated magnetic iron oxide nanoparticles as carrier system: drug loading and in vitro drug release study. Int J Pharm 365:180–189

    Article  CAS  Google Scholar 

  • Gamel E, Nadia EA, Wortmann L, Arroubb K, Mathur S (2011) SiO2@Fe2O3 core-shell nanoparticles for covalent immobilization and release of sparfloxacin drug. Chem Commun 47:10076–10078

    Article  Google Scholar 

  • Guo L, Huang J, Zhang X, Li Y, Zheng LM (2008) Bacterial magnetic nanoparticle as a drug carrier. J Mater Chem 18:5993–5997

    Article  CAS  Google Scholar 

  • Guo S, Li D, Zhang L, Li J, Wang E (2009) Monodisperse mesoporous superparamagnetic single-crystal magnetite nanoparticles for drug delivery. Biomaterials 30:1881–1889

    Article  CAS  Google Scholar 

  • Hood JD, Cheresh DA (2002) Role of integrins in cell invasion and migration. Nat Rev Cancer 2:91–100

    Article  Google Scholar 

  • Hu Y, Xie J, Tong YW, Wang CH (2007) Effect of PEG conformation and particle size on the cellular uptake efficiency of nanoparticles with the HepG2 cells. J Controlled Release 118:7–17

    Article  CAS  Google Scholar 

  • Huang SH, Juang RS (2011) Biochemical and biomedical applications of multifunctional magnetic nanoparticles: a review. J Nanopart Res 13:4411–4430

    Article  Google Scholar 

  • Jin H, Varner J (2004) Integrins: roles in cancer development and as treatment targets. Br J Cancer 90:561–565

    Article  CAS  Google Scholar 

  • Kang YS, Risbud S, Rabolt JF, Stroeve P (1996) Synthesis and characterization of nanometer-size Fe3O4 and gamma-Fe2O3 particles. Chem Mater 8:2209–2211

    Article  CAS  Google Scholar 

  • Lien YH, Wu TM, Wu JH (2011) Cytotoxicity and drug release behavior of PNIPAM grafted on silica-coated iron oxide nanoparticles. J Nanopart Res 13:5065–5075

    Article  CAS  Google Scholar 

  • Liu X, Ma Z, Xing J, Liu H (2004) Preparation and characterization of amino-silane modified superparamagnetic silica nanospheres. J Magn Magn Mater 270:1–2

    Article  CAS  Google Scholar 

  • Mary M (1997) Applications of magnetic particles in immunoassays In: Hafeli U, Schutt W, Zborowski M (eds) Scientific and Clinical Applications of Magnetic Carriers, Plenum, New York, p 303

  • Miao QH, Li SP, Han SY, Wang Z, Wu Y, Nie GJ (2012) Construction of hydroxypropyl-b-cyclodextrin copolymer nanoparticles and targeting delivery of paclitaxel. J Nanopart Res 14:1043–1057

    Article  Google Scholar 

  • Mikhaylov G, Mikac U, Magaeva AA, Itin VI, Naiden EP, Psakhye I, Babes L, Reinhecke T, Peter C, Zeiser R, Bogyo M, Turk V, Psakhye SG, Turk B, Vasiljeva O (2011) Ferri-liposomes as an MRI-visible drug-delivery system for targeting tumours and their microenvironment. Nat Nanotechnol 6:594–602

    Article  CAS  Google Scholar 

  • Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L (2004) Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev 56:185–229

    Article  CAS  Google Scholar 

  • Nasongkla N, Bey E, Ren J, Ai H, Khemtong C, Guthi JS, Chin SF, Sherry AD, Boothman DA, Gao J (2006) Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems. Nano Lett 6:2427–2430

    Article  CAS  Google Scholar 

  • Pollakis G, Goormaghtigh E, Ruysschaert JM (1983) Role of the quinine structure in the mitochondrial damage induced by antitumor anthracyclines. FEBS Lett 155:267–272

    Article  CAS  Google Scholar 

  • Santos DP, Ruiz MA, Gallardo V, Zanoni MVB, Arias JL (2011) Multifunctional antitumor magnetite/chitosan-l-glutamic acid (core/shell) nanocomposites. J Nanopart Res 13:4311–4323

    Article  CAS  Google Scholar 

  • Temming K, Meyer DL, Zabinski R, Dijkers ECF, Poelstra K, Molema G, Kok RJ (2006) Evaluation of RGD-targeted albumin carriers for specific delivery of Auristatin E to tumor blood vessels. Bioconjugate Chem 17:1385–1394

    Article  CAS  Google Scholar 

  • Xie J, Chen K, Lee HY, Xu C, Hsu AR, Peng S, Chen X, Sun SH (2008) Ultrasmall c(RGDyK)-coated Fe3O4 nanoparticles and their specific targeting to integrin αvβ3-rich tumor cells. J Am Chem Soc 130:7542–7543

    Article  CAS  Google Scholar 

  • Xiong JP, Stehle T, Zhang R, Joachimiak A, Frech M, Goodman SL, Arnaout MA, Diefenbach B, Dunker R, Scott DL (2002) Crystal structure of the extracellular segment of integrin alpha V beta 3 in complex with an Arg–Gly–Asp ligand. Science 296:151–155

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the Natural Science Foundation of China (NSFC21073091) and Natural Science Foundation of Jiangsu Province (No. BK2009009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, L., Ding, W. & Zheng, LM. Synthesis and evaluation of c(RGDyK)-coupled superparamagnetic iron oxide nanoparticles for specific delivery of large amount of doxorubicin to tumor cell. J Nanopart Res 15, 1720 (2013). https://doi.org/10.1007/s11051-013-1720-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1720-4

Keywords

Navigation