Skip to main content
Log in

Inverse magnetic proximity effects in superconducting In-Ni and Sn-Ni nanoparticle assemblies

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

We report on experimental evidence of non-s-wave pairing in In and Sn nanoparticle assemblies. The superconducting transition temperature T C of the In and Sn nanoparticles varies noticeably with the particle diameter. Surprisingly, T C shifts to a noticeably higher temperature when magnetic Ni nanoparticles are introduced into the vicinity of the superconducting nanoparticles. The T C increases further when the magnetic Ni nanoparticles are brought even closer to the superconducting nanoparticles. There is a critical Ni composition and a critical spatial separation between the magnetic and superconducting nanoparticles that must be reached before their magnetic proximity will suppress the superconductivity. A qualitative mechanism is proposed to understand the present observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bergeret FS, Volkov AF, Efetov KB (2001) Long-range proximity effects in superconductor-ferromagnet structures. Phys Rev Lett 86:4096–4099

    Article  CAS  Google Scholar 

  • Bergeret FS, Volkov AF, Efetov KB (2005) Odd triplet superconductivity and related phenomena in superconductor-ferromagnet structures. Rev Mod Phys 77:1321–1373

    Article  CAS  Google Scholar 

  • Bose S, Garcia–Garcia AM, Ugeda MM, Urbina JD, Michaelis CH, Brihuega I, Kern K (2010) Observation of shell effects in superconducting nanoparticles of Sn. Nat Mater 9:550–554

    Article  CAS  Google Scholar 

  • Bourgeois O, Frydman A, Dynes RC (2002) Inverse proximity effect in a strongly correlated electron system. Phys Rev Lett 88:186403

    Article  Google Scholar 

  • Buzdin AI (2005) Proximity effects in superconductor-ferromagnet heterostructures. Rev Mod Phys 77:935–976

    Article  CAS  Google Scholar 

  • Gu JY, You C-Y, Jiang JS, Pearson JB, Bazaliy Ya, Bader SD (2002) Magnetization-orientation dependence of the superconducting transition temperature in the ferromagnet-superconductor-ferromagnet system: CuNi/Nb/CuNi. Phys Rev Lett 89:267001

    Article  CAS  Google Scholar 

  • Guo Y, Zhang YF, Bao X-Y, Han T-Z, Tang Z, Zhang L-X, Zhu W-G, Wang EG, Niu Q, Qiu ZQ, Jia JF, Zhao Z-X, Xue Q-K (2004) Superconductivity modulated by quantum size effects. Science 306:1915–1917

    Article  CAS  Google Scholar 

  • Ishida K, Mukuda H, Kitaoka Y, Asayama K, Mao ZO, Mori Y, Maeno Y (1998) Spin-triplet superconductivity in Sr2RuO4 identified by 17O Knight shift. Nature 396:658–660

    Article  CAS  Google Scholar 

  • Kontos T, Aprili M, Lesueur J, Grison X (2001) Inhomogeneous superconductivity induced in a ferromagnet by proximity effect. Phys Rev Lett 86:304–307

    Article  CAS  Google Scholar 

  • LeClair P, Moodera JS, Philip J, Heiman D (2005) Coexistence of ferromagnetism and superconductivity in Ni/Bi bilayers. Phys Rev Lett 94:037006

    Article  CAS  Google Scholar 

  • Li W-H, Yang CC, Tsao FC, Lee KC (2003) Quantum size effects on the superconducting parameters of zero-dimensional Pb nanoparticles. Phys Rev B 68:184507

    Article  Google Scholar 

  • Li W-H, Yang CC, Tsao FC, Wu SY, Huang PJ, Chung MK, Yao YD (2005) Enhancement of superconductivity by the small size effect in In nanoparticles. Phys Rev B 72:214516

    Article  Google Scholar 

  • Li W-H, Wang C-W, Li C-Y, Hsu CK, Yang CC, Wu C-M (2008) Coexistence of ferromagnetism and superconductivity in Sn nanoparticles. Phys Rev B 77:094508

    Article  Google Scholar 

  • Li W-H, Wu C-M, Wang C-W, Li C-Y, Hsu CK (2012) Formation of superconductivity through interparticle interactions in ferrimagnetic-like Sn nanoparticle assemblies. J Nanopart Res 14:764

    Article  Google Scholar 

  • Liu S-B, Chen C-T, Wu C-M, Wang C-W, Wang C-J, Karna SK, Li W-H (2011) Suppression of superconductivity by interparticle interactions in Al nanoparticle assembly. J Appl Phys 109:07E153

    Article  Google Scholar 

  • Moshchalkov VV, Gielen L, Strunk C, Jonckheere R, Qiu X, Van Haesendonck C, Bruynseraede Y (1995) Effect of sample topology on the critical fields of mesoscopic superconductors. Nature 373:319–322

    Article  CAS  Google Scholar 

  • Mu¨hlschlegel B, Scalapino DJ, Dento R (1972) Thermodynamic properties of small superconducting particles. Phys Rev B 6:1767–1777

    Article  Google Scholar 

  • Mühge Th, Garif’yanov NN, Goryunov YuV, Theis-Bröhl K, Westerholt K, Garifullin IA, Zabel H (1998) Influence of superconductivity on magnetic properties of superconductor/ferromagnet epitaxial bilayers. Physica C 296:325–336

    Article  Google Scholar 

  • Petrashov VT, Sosnin IA, Cox I, Parsons A, Troadec C (1999) Giant mutual proximity effects in ferromagnetic/superconducting nanostructures. Phys Rev Lett 83:3281–3284

    Article  CAS  Google Scholar 

  • Reich S, Leitus G, Popovitz-Biro R, Schechter M (2003) Magnetization of small lead particles. Phys Rev Lett 91:147001

    Article  CAS  Google Scholar 

  • Rice TM, Sigrist M (1995) Sr2RuO4: an electronic analogue of 3He? J Phys 7:L643–L648

    CAS  Google Scholar 

  • Ryazanov VV, Oboznov VA, Rusanov AY, Veretennikov AV, Golubov AA, Aarts J (2001) Coupling of two superconductors through a ferromagnet: evidence for a π junction. Phys Rev Lett 86:2427–2430

    Article  CAS  Google Scholar 

  • Tou H, Kitaoka Y, Ishida K, Asayama K, Kimura N, Onuki Y, Yamamoto E, Haga Y, Maezawa K (1998) Nonunitary spin-triplet superconductivity in UPt3: evidence from 195 Pt Knight shift study. Phys Rev Lett 80:3129–3132

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Council of Taiwan under Grant No. NSC 101-2112-M-008-016-MY3

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Hsien Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, CM., Karna, S.K., Liu, SB. et al. Inverse magnetic proximity effects in superconducting In-Ni and Sn-Ni nanoparticle assemblies. J Nanopart Res 15, 1691 (2013). https://doi.org/10.1007/s11051-013-1691-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1691-5

Keywords

Navigation