Skip to main content
Log in

Influence of synthesis conditions on properties of green-reduced graphene oxide

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Green reduction of graphene oxide (GO) was performed using ascorbic acid (AA) in the presence of poly(sodium 4-styrenesulfonate), which resulted in reduced graphene oxide (PSS–rGO) with excellent solubility and stability in water. Large rGO sheets of 4 μm2 area and 1.1-nm thickness were obtained. The measurements showed that noncovalent functionalization with PSS molecules prevented rGO from aggregation. The parameters of graphite oxidation process and AA:GO w/w ratio were evaluated, and the obtained results showed that the properties of the reduced material (PSS–rGO) can be tailored by proper selection and adjustment of these parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Acik M, Lee G, Mattevi C et al (2011) The role of oxygen during thermal reduction of graphene oxide studied by infrared absorption spectroscopy. J Phys Chem C 115:1981–19761

    Article  Google Scholar 

  • Akhavan O, Ghaderi E (2012) Escherichia coli bacteria reduce graphene oxide to bactericidal graphene in a self-limiting manner. Carbon 50:1853–1860

    Article  CAS  Google Scholar 

  • Akhavan O, Ghaderi E, Esfandiar A (2011) Wrapping bacteria by graphene nanosheets for isolation from environment, reactivation by sonication, and inactivation by near-infrared irradiation. J Phys Chem B 115:6279–6288

    Article  CAS  Google Scholar 

  • Akhavan O, Ghaderi E, Aghayee S, Fereydooni Y, Talebi A (2012) The use of a glucose-reduced graphene oxide suspension for photothermal cancer therapy. J Mater Chem 22:13773–13781

    Article  CAS  Google Scholar 

  • Bae S, Kim H, Lee Y et al (2010) Roll to- roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol 5:574–578

    Article  CAS  Google Scholar 

  • Bai H, Xu Y, Zhao L, Li C, Shi G (2009) Non-covalent functionalization of graphene sheets by sulfonated polyaniline. Chem Commun 13:1667–1669

    Article  Google Scholar 

  • Boehm HP (1994) Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon 32:759–769

    Article  CAS  Google Scholar 

  • Boukhvalov DW, Katsnelson MI (2008) Modeling of graphite oxide. J Am Chem Soc 130:10697–10701

    Article  CAS  Google Scholar 

  • Buchsteiner A, Lerf A, Pieper J (2006) Water dynamics in graphite oxide investigated with neutron scattering. J Phys Chem B 110:22328

    Article  CAS  Google Scholar 

  • Choi BG, Park H, Park TJ et al (2010) Solution chemistry of self-assembled graphene nanohybrids for high-performance flexible biosensors. ACS Nano 4:2910–2918

    Article  CAS  Google Scholar 

  • Cote LJ, Silva RC, Huang J (2009) Flash reduction and patterning of graphite oxide and its polymer composite. J Am Chem Soc 131:11027–11032

    Article  CAS  Google Scholar 

  • Dai B, Fu L, Liao L et al (2011) High-quality single-layer graphene via reparative reduction of graphene oxide. Nano Res 4:434–439

    Article  CAS  Google Scholar 

  • Davies MB, Austin J, Partridge DA (1991) Vitamin C: its chemistry and biochemistry. Royal Society of Chemistry, Cambridge

    Google Scholar 

  • Elias DC, Nair RR, Mohiuddin TMG, Morozov SV, Blake P, Halsall MP et al (2009) Control of graphene’s properties by reversible hydrogenation: evidence for graphene. Science 23:610–613

    Article  Google Scholar 

  • Fan FRF, Park S, Zhu Y, Ruoff RS, Bard AJ (2009) Electrogenerated chemiluminescence of partially oxidized highly oriented pyrolytic graphite surfaces and of graphene oxide nanoparticles. J Am Chem Soc 131:937–939

    Article  CAS  Google Scholar 

  • Fernandez-Merino MJ, Guardia L, Paredes JI, Villar-Rodil S et al (2010) Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions. J Phys Chem C 114:6426–6432

    Article  CAS  Google Scholar 

  • Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov KS, Roth S, Geim AK (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett 97:187401–187405

    Article  CAS  Google Scholar 

  • Ganguly A, Sharma S, Papakonstantinou P, Hamilton J (2011) Probing the thermal deoxygenation of graphene oxide using high-resolution in situ X-ray-based spectroscopies. J Phys Chem C 115:17009–17019

    Article  CAS  Google Scholar 

  • Hancock RD, Viola R (2005) Biosynthesis and catabolism of l-ascorbic acid in plants. Crit Rev Plant Sci 24:167–188

    Article  CAS  Google Scholar 

  • Hernandez Y, Nicolosi V, Lotya M et al (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 3:563–568

    Article  CAS  Google Scholar 

  • Hontoria-Lucas C, Lopez-Peinado AJ, Loepz-Gonzalez JDD et al (1995) Study of oxygen-containing groups in a series of graphite oxides: physical and chemical characterization. Carbon 33:1585–1592

    Article  CAS  Google Scholar 

  • Jeong HK, Lee YP, Lahaye RJWE et al (2008) Evidence of graphitic AB stacking order of graphite oxides. J Am Chem Soc 130:1362–1366

    Article  CAS  Google Scholar 

  • Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn JH, Kim P, Choi JY, Hong BH (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457:706–710

    Article  CAS  Google Scholar 

  • Kuila T, Bose S, Mishra AK, Khanra P, Kim NH, Lee JH (2012) Chemical functionalization of graphene and its applications. Prog Mater Sci 57:1061–1105

    Article  CAS  Google Scholar 

  • Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH (2010) Recent advances in graphene based polymer composites. Prog Polym Sci 35:1350–1375

    Article  CAS  Google Scholar 

  • Kumar P, Subrahmanyam KS, Rao CNR (2011a) Graphene produced by radiation-induced reduction of graphene oxide. Intl J Nanosci 10:559–566

    Article  CAS  Google Scholar 

  • Kumar P, Panchakarla LS, Rao CNR (2011b) Laser-induced unzipping of carbon nanotubes to yield graphene nanoribbons. Nanoscale 3:2127–2129

    Article  CAS  Google Scholar 

  • Kumar P, Das B, Chitara B et al (2012) Novel radiation induced properties of graphene and related materials. Macromol Chem Phys 213:1146–1163

    Article  CAS  Google Scholar 

  • Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388

    Article  CAS  Google Scholar 

  • Li D, Kaner RB (2008) Graphene-based materials. Science 320:1170–1171

    Article  CAS  Google Scholar 

  • Li J, Liu CY (2010) Ag/Graphene heterostructures: synthesis, characterization and optical properties. Eur J Inorg Chem 8:1244–1248

    Article  Google Scholar 

  • Li D, Muller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3:101–105

    Article  CAS  Google Scholar 

  • Li X, Cai W, An J et al (2009) Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324:1312–1314

    Article  CAS  Google Scholar 

  • Maitra U, Matte HSRR, Kumar P, Rao CNR (2012) Strategies for the synthesis of graphene, graphene nanoribbons, nanoscrolls and related materials. Chimia 66:941–948

    Article  CAS  Google Scholar 

  • Mei XG, Ouyang JY (2011) Ultrasonication-assisted ultrafast reduction of graphene oxide by zinc powder at room temperature. Carbon 49:5389–5397

    Article  CAS  Google Scholar 

  • Mkhoyan K, Contryman A, Silcox J, Stewart D, Eda G, Mattevi C, Miller S, Chhowalla M (2009) Atomic and electronic structure of graphene-oxide. Nano Lett 9:1058–1063

    Article  CAS  Google Scholar 

  • Nair RR, Blake P, Grigorenko AN et al (2008) Fine structure constant defines visual transparency of graphene. Science 320:1308

    Article  CAS  Google Scholar 

  • Park S, Lee KS, Bozoklu G et al (2008) Graphene oxide papers modified by divalent ions enhancing mechanical properties via chemical cross-linking. ACS Nano 2:572–578

    Article  CAS  Google Scholar 

  • Park S, An J, Jung I et al (2009) Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano Lett 9:1593–1597

    Article  CAS  Google Scholar 

  • Park HJ, Meyer J, Roth S, Skákalová V (2010) Growth and properties of few-layer graphene prepared by chemical vapor deposition. Carbon 48:1088–1094

    Article  CAS  Google Scholar 

  • Park S, An J, Potts JR, Velamakanni A, Murali S, Ruoff RS (2011) Hydrazine-reduction of graphite- and graphene oxide. Carbon 49:3019–3023

    Article  CAS  Google Scholar 

  • Patil AJ, Vickery JL, Scott TB, Mann S (2009) Aqueous stabilization and self-assembly of graphene sheets into layered bio-nanocomposites using DNA. Adv Mater 21:3159–3164

    Article  CAS  Google Scholar 

  • Stankovich S, Piner RD, Chen X, Wu N, Nguyen SBT, Ruoff RS (2006) Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). J Mater Chem 16:155–158

    Article  CAS  Google Scholar 

  • Subrahmanyam KS, Panchakarla LS, Govindaraj A, Rao CNR (2009) Simple method of preparing graphene flakes by an arc-discharge method. J Phys Chem C 113:4257–4259

    Article  CAS  Google Scholar 

  • Szabó T, Tombacz E, Illes E, Dékány I (2006) Enhanced acidity and pH-dependent surface charge characterization of successively oxidized graphite oxides. Carbon 44:537–545

    Article  Google Scholar 

  • Wu JS, Pisula W, Mullen K (2007) Graphenes as potential material for electronics. Chem Rev 107:718–747

    Article  CAS  Google Scholar 

  • Wu H, Zhao WF, Hu HW, Chen GH (2011) One-step in situ ball milling synthesis of polymer-functionalized graphene nanocomposites. J Mater Chem 21:8626–8632

    Article  CAS  Google Scholar 

  • Xu Y, Bai H, Lu G, Li C, Shi G (2008) Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J Am Chem Soc 130:5856–5857

    Article  CAS  Google Scholar 

  • Yin Z, Wu S, Zhou X et al (2010) Electrochemical deposition of ZnO nanorods on transparent reduced graphene oxide electrodes for hybrid solar cells. Small 6:307–312

    Article  CAS  Google Scholar 

  • Zhang L, Liang J, Huang Y, Ma Y, Wang Y, Chen YS (2009) Size-controlled synthesis of graphene oxide sheets on a large scale using chemical exfoliation. Carbon 47:3365–3380

    Article  CAS  Google Scholar 

  • Zhang J, Yang H, Shen G, Cheng P, Zhang J, Guo S (2010) Reduction of graphene oxide via l-ascorbic acid. Chem Comm 46:1112–1114

    Article  CAS  Google Scholar 

  • Zhou Y, Bao Q, Tang LAL, Zhong Y, Loh KP (2009) Hydrothermal dehydration for the ‘green’ reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties. Chem Mater 21:2950–2956

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the European Commission for their financial support through the project no. NMP3-SL-2010-246073.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Pruna.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 1847 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pruna, A., Pullini, D. & Busquets, D. Influence of synthesis conditions on properties of green-reduced graphene oxide. J Nanopart Res 15, 1605 (2013). https://doi.org/10.1007/s11051-013-1605-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1605-6

Keywords

Navigation