Skip to main content
Log in

Fabrication of water-repellent cellulose fiber coated with magnetic nanoparticles under supercritical carbon dioxide

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Hematite nanoparticle-coated magnetic composite fiber was prepared in supercritical carbon dioxide (scCO2). With the help of scCO2, cellulose did not need to be dissolved and regenerated and it could be in any form (e.g., cotton wool, filter paper, textile, etc.). The penetrating and swelling effect of scCO2, the slowing reaction rate of weak alkalis, and the template effect of cellulose fibers were discovered to be the key factors for the fabrication of ordered cellulose/Fe2O3 composite fibers. The structures of the composite fibers as well as the layers of Fe2O3 particles were characterized by means of scanning/transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and Raman investigation. It was found that α-Fe2O3 granules which ranged from 30 to 85 nm with average diameter around 55 nm would be generated on the surface of cellulose fibers via potassium acetate, while irregular square prisms (ranged from 200 to 600 nm) which were composed of smaller nanoparticles (~10 nm) would be fabricated via urea. And, the obtained composite was highly water repellent with superparamagnetic or ferromagnetic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aronniemi M, Lahtinen J, Hautojärvi P (2004) Characterization of iron oxide thin films. Surf Interface Anal 36:1004–1006

    Article  CAS  Google Scholar 

  • Bayer IS, Fragouli D, Attanasio A, Sorce B, Bertoni G, Brescia R et al (2011) Water-repellent cellulose fiber networks with multifunctional properties. ACS Appl Mater Interfaces 3:4024–4031

    Article  CAS  Google Scholar 

  • Calvo S, Arias NP, Giraldo O et al (2012) Thermal and magnetic behavior of Angustifolia Kunth bamboo fibers covered with Fe3O4 particles. Physica B Condens Matter 407:3267–3270

    Article  CAS  Google Scholar 

  • Cansell F, Aymonier C (2009) Design of functional nanostructured materials using supercritical fluids. J Supercrit Fluids 47:508–516

    Article  CAS  Google Scholar 

  • Deb P, Biswas T, Sen D, Basumallick A, Mazumder S (2002) Characteristics of Fe2O3 nanoparticles prepared by heat treatment of a nonaqueous powder precipitate. J Nanopart Res 4:91–97

    Article  CAS  Google Scholar 

  • deFaria DLA, Silva SV, deOliveira MT (1997) Raman microspectroscopy of some iron oxides and oxyhydroxides. J Raman Spectrosc 28:873–878

    Article  CAS  Google Scholar 

  • Grasso D, Smets BF, Strevett KA et al (1996) Impact of physiological state on surface thermodynamics and adhesion of Pseudomonas aeruginosa. Environ Sci Technol 30:3604–3608

    Article  CAS  Google Scholar 

  • Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021

    Article  CAS  Google Scholar 

  • Hu JS, Zhong LS, Song WG, Wan LJ (2008) Synthesis of hierarchically structured metal oxides and their application in heavy metal ion removal. Adv Mater 20:2977–2982

    Article  CAS  Google Scholar 

  • Huang MR, Li XG (1998) Thermal degradation of cellulose and cellulose esters. J Appl Polym Sci 68:293–304

    Article  CAS  Google Scholar 

  • Jiang JZ, Goya GF, Rechenberg HR (1999) Magnetic properties of nanostructured CuFe2O4. J Phys: Condens Matter 11:4063–4078

    Article  CAS  Google Scholar 

  • Kawamoto H, Saka S (2006) Heterogeneity in cellulose pyrolysis indicated from the pyrolysis in sulfolane. J Anal Appl Pyrolysis 76:280–284

    Article  CAS  Google Scholar 

  • Kim J, Yun S, Ounaies Z (2006) Discovery of cellulose as a smart material. Macromolecules 39:4202–4206

    Article  CAS  Google Scholar 

  • Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Edit 44:3358–3393

    Article  CAS  Google Scholar 

  • Kulak AN, Iddon P, Li YT, Armes SP, Colfen H, Paris O et al (2007) Continuous structural evolution of calcium carbonate particles: a unifying model of copolymer-mediated crystallization. J Am Chem Soc 129:3729–3736

    Article  CAS  Google Scholar 

  • Kwok DY, Neumann AW (1999) Contact angle measurement and contact angle interpretation. Adv Colloid Interface 81:167–249

    Article  CAS  Google Scholar 

  • Li W, Wu PY (2009) Biomimetic synthesis of monodisperse rosette-like calcite mesocrystals regulated by carboxymethyl cellulose and the proposed mechanism: an unconventional rhombohedra-stacking route. CrystEngComm 11:2466–2474

    Article  CAS  Google Scholar 

  • Li SM, Jia N, Ma MG, Zhang Z, Liu QH, Sun RC (2011) Cellulose-silver nanocomposites: microwave-assisted synthesis, characterization, their thermal stability, and antimicrobial property. Carbohydr Polym 86:441–447

    Article  CAS  Google Scholar 

  • Lian JB, Duan XC, Ma JM, Peng P, Kim TI, Zheng WJ (2009) Hematite (α-Fe2O3) with various morphologies: ionic liquid-assisted synthesis, formation mechanism, and properties. ACS Nano 3:3749–3761

    Article  CAS  Google Scholar 

  • Liu SL, Zhang LN, Zhou JP, Wu RX (2008a) Structure and properties of cellulose/Fe2O3 nanocomposite fibers spun via an effective pathway. J Phys Chem C 112:4538–4544

    Article  CAS  Google Scholar 

  • Liu SL, Zhang LN, Zhou JP, Xiang JF, Sun JT, Guan JG (2008b) Fiberlike Fe2O3 macroporous nanomaterials fabricated by calcinating regenerate cellulose composite fibers. Chem Mat 20:3623–3628

    Article  CAS  Google Scholar 

  • Liu SL, Zhou JP, Zhang LN (2011) In situ synthesis of plate-like Fe2O3 nanoparticles in porous cellulose films with obvious magnetic anisotropy. Cellulose 18:663–673

    Article  CAS  Google Scholar 

  • Mahadeva SK, Kim J (2011) Hybrid nanocomposite based on cellulose and tin oxide: growth, structure, tensile and electrical characteristics. Sci Technol Adv Mater 12. doi:10.1088/1468-6996/12/5/055006

  • Mao Y, Zhou JP, Cai J, Zhang LN (2006) Effects of coagulants on porous structure of membranes prepared from cellulose in NaOH/urea aqueous solution. J Membr Sci 279:246–255

    Article  CAS  Google Scholar 

  • McIntyre NS, Zetaruk DG (1977) X-ray photoelectron spectroscopic studies of iron-oxides. Anal Chem 49:1521–1529

    Article  CAS  Google Scholar 

  • Mdarhri A, Brosseau C, Carmona F (2007) Microwave dielectric properties of carbon black filled polymers under uniaxial tension. J Appl Phys 101. doi:10.1063/1.2718867

  • Muruganandham M, Amutha R, Ahmmad B, Repo E, Sillanpaa M (2010) Self-assembled fabrication of superparamagnetic highly stable mesoporous amorphous iron oxides. J Phys Chem C 114:22493–22501

    Article  CAS  Google Scholar 

  • Nadagouda MN, Varma RS (2007) Synthesis of thermally stable carboxymethyl cellulose/metal biodegradable nanocomposites for potential biological applications. Biomacromolecules 8:2762–2767

    Article  CAS  Google Scholar 

  • Nieuwoudt MK, Comins JD, Cukrowski I (2011) The growth of the passive film on iron in 0.05 M NaOH studied in situ by Raman microspectroscopy and electrochemical polarization. Part II: in situ Raman spectra of the passive film surface during growth by electrochemical polarization. J Raman Spectrosc 42:1353–1365

    Article  CAS  Google Scholar 

  • Niu T, Gu YQ, Huang JG (2011) Luminescent cellulose sheet fabricated by facile self-assembly of cadmium selenide nanoparticles on cellulose nanofibres. J Mater Chem 21:651–656

    Article  CAS  Google Scholar 

  • Ocaña M, Morales MP, Serna CJ (1999) Homogeneous precipitation of uniform α-Fe2O3 particles from iron salts solutions in the presence of urea. J Colloid Interface Sci 212:317–323

    Article  Google Scholar 

  • Orfao JJM, Antunes FJA, Figueiredo JL (1999) Pyrolysis kinetics of lignocellulosic materials-three independent reactions model. Fuel 78:349–358

    Article  CAS  Google Scholar 

  • Pradhan GK, Parida KM (2011) Fabrication, growth mechanism, and characterization of α-Fe2O3 nanorods. ACS Appl Mater Interfaces 3:317–323

    Article  CAS  Google Scholar 

  • Qu X, Kobayashi N, Komatsu T (2010) Solid nanotubes comprising α-Fe2O3 nanoparticles prepared from ferritin protein. ACS Nano 4:1732–1738

    Article  CAS  Google Scholar 

  • Shekhah O, Ranke W, Schule A, Kolios G, Schlogl R (2003) Styrene synthesis: high conversion over unpromoted iron oxide catalysts under practical working conditions. Angew Chem-Int Edit 42:5760–5763

    Article  CAS  Google Scholar 

  • Si S, Kotal A, Mandal TK, Giri S, Nakamura H, Kohara T (2004) Size-controlled synthesis of magnetite nanoparticles in the presence of polyelectrolytes. Chem Mat 16:3489–3496

    Article  CAS  Google Scholar 

  • Sun N, Swatloski RP, Maxim ML, Rahman M, Harland AG, Haque A et al (2008) Magnetite-embedded cellulose fibers prepared from ionic liquid. J Mater Chem 18:283–290

    Article  CAS  Google Scholar 

  • Terris BD, Thomson T (2005) Nanofabricated and self-assembled magnetic structures as data storage media. J Phys D Appl Phys 38:R199–R222

    Article  CAS  Google Scholar 

  • Tomasko DL, Li HB, Liu DH, Han XM, Wingert MJ, Lee LJ et al (2003) A review of CO2 applications in the processing of polymers. Ind Eng Chem Res 42:6431–6456

    Article  CAS  Google Scholar 

  • Van Oss CJ (2002) Use of the combined Lifshitz-van der Waals and Lewis acid-base approaches in determining the apolar and polar contributions to surface and interfacial tensions and free energies. J Adhes Sci Technol 16:669–677

    Article  Google Scholar 

  • Wang SB, Min YL, Yu SH (2007a) Synthesis and magnetic properties of uniform hematite nanocubes. J Phys Chem C 111:3551–3554

    Article  CAS  Google Scholar 

  • Wang WW, Zhu YJ, Ruan ML (2007b) Microwave-assisted synthesis and magnetic property of magnetite and hematite nanoparticles. J Nanopart Res 9:419–426

    Article  CAS  Google Scholar 

  • Wang LL, Fei T, Lou Z, Zhang T (2011) Three-dimensional hierarchical flowerlike α-Fe2O3 nanostructures: synthesis and ethanol-sensing properties. ACS Appl Mater Interfaces 3:4689–4694

    Article  CAS  Google Scholar 

  • Xuan S, Wang F, Lai JMY, Sham KWY, Wang Y-XJ, Lee S-F et al (2011) Synthesis of biocompatible, mesoporous Fe3O4 nano/microspheres with large surface area for magnetic resonance imaging and therapeutic applications. ACS Appl Mater Interfaces 3:237–244

    Article  CAS  Google Scholar 

  • Yu QS, Wu PY, Xu P, Li L, Liu T, Zhao L (2008) Synthesis of cellulose/titanium dioxide hybrids in supercritical carbon dioxide. Green Chem 10:1061–1067

    Article  CAS  Google Scholar 

  • Zeng H, Sun SH (2008) Syntheses, properties, and potential applications of multicomponent magnetic nanoparticles. Adv Funct Mater 18:391–400

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support from the National Science Foundation of China (NSFC) (20934002, 20774022) and the National Basic Research Program of China (No. 2009CB930000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peiyi Wu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 4,963 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, S., Shen, D. & Wu, P. Fabrication of water-repellent cellulose fiber coated with magnetic nanoparticles under supercritical carbon dioxide. J Nanopart Res 15, 1577 (2013). https://doi.org/10.1007/s11051-013-1577-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1577-6

Keywords

Navigation