Skip to main content
Log in

Novel methods for the synthesis of magnetite nanoparticles with special morphologies and textured assemblages

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

There is an increasing technological demand for magnetic nanocrystals with special morphologies and controlled sizes. Several approaches are used for the synthesis of magnetite crystals with irregular or octahedral shapes; however, the room-temperature synthesis of nanocrystals with specific morphologies is not yet established. Here, we describe the synthesis of magnetite crystals (100–300 nm) at a relatively low temperature (~70 °C) from organic precursors, including Fe(II) oxalate or Fe(II) sulfate, and study the effects of ethylene glycol and tetraethylene glycol on the final physical and chemical properties of the crystals. The magnetite crystals formed from different precursor materials (sulfate or oxalate green rust) show specific morphological and textural features. We show that octahedral magnetite crystals can be produced from Fe(II) oxalate via a simple co-precipitation process. Using different kinds and amounts of polyols, various types of particle morphologies and nanocrystal textures can be produced, including hexagonal-shaped clusters of elongated crystals and porous and solid, large, rounded polycrystalline aggregates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • An L, Li ZQ, Li W, Nie YR, Chen ZM, Wang YP, Yang B (2006) Patterned magnetite films prepared via soft lithography and thermal decomposition. J Magn Mag Mat 303:127–130

    Article  CAS  Google Scholar 

  • Angermann A, Töpfer J (2008) Synthesis of magnetite nanoparticles by thermal decomposition of ferrous oxalate dihydrate. J Mat Sci 43:5123–5130

    Article  CAS  Google Scholar 

  • Asmatulu R, Zalich MA, Claus RO, Riffle JS (2005) Synthesis, characterization and targeting of biodegradable magnetic nanocomposite particles by external magnetic fields. J Magn Mag Mat 292:108–119

    Article  CAS  Google Scholar 

  • Blesa MA, Matijevic E (1989) Phase transformation of iron-oxides, oxohydroxides, and hydrous-oxides in aqueous media. Adv Coll Interf Sci 29:173–221

    Article  CAS  Google Scholar 

  • Cai W, Wan J (2007) Facile synthesis of superparamagnetic nanoparticles in liquid polyols. J Colloid Interface Sci 305:366–370

    Article  CAS  Google Scholar 

  • Cheng JP, Ma R, Shi D, Liu F, Zhang XB (2011) Rapid growth of magnetite nanoplates by ultrasonic irradiation at low temperature. Ultrason Sonochem 18:1038–1042

    Article  CAS  Google Scholar 

  • Combes JM, Manceau A, Calas G (1990) Formation of ferric oxides from aqueos solutions: A polyhedral approach by X-ray Absorption Spectroscopy: II Hematite formation from ferric gels Geochim Cosmochim Ac 54:1083–1091

    CAS  Google Scholar 

  • Cornell RM, Schwertmann U (2003) The iron oxides. Wiley, Weinheim, p 530

    Book  Google Scholar 

  • Corr SA, Rakovich YP, Gun’ko YK (2008) Multifunctional magnetic-fluorescent nanocomposites for biomedical application. Nanoscale Res Lett 3:87–104

    Article  CAS  Google Scholar 

  • Frost RL, Weier ML (2004) Thermal decomposition of humboldtine – a high resolution thermogravimetric and hot stage Raman spectroscopic study. J Therm Anal Calorim 75:277–291

    Article  CAS  Google Scholar 

  • Gaviria JP, Bohe A, Pasquevich A, Pasquevich DM (2007) Hematite to magnetite reduction monitored by Mössbauer spectroscopy and X-ray diffraction. Phys B 389:198–201

    Article  CAS  Google Scholar 

  • Génin A, Ruby C, Abdelmoula M, Benali O, Ghanbaja J, Refait P, Génin J-MR (2002) Synthesis of Fe(II-III) hydroxysulphate green rust by coprecipitation. Solid State Sci 4:61–66

    Article  Google Scholar 

  • Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021

    Article  CAS  Google Scholar 

  • He T, Chen D, Jiao X, Xu Y, Gu Y (2004) Surfactant-assisted solvothermal synthesis of Co3O4 hollow spheres with oriented-aggregation nanostructures and tunable particle size. Langmuir 20:8404–8408

    Article  CAS  Google Scholar 

  • Hou YL, Yu JF, Gao S (2003) Solvothermal reduction synthesis and characterization of superparamagnetic magnetite nanoparticles. J Mat Chem 13:1983–1987

    Article  CAS  Google Scholar 

  • Itoh H, Sugimoto T (2003) Systematic control of size, shape, structure, and magnetic properties of uniform magnetite and maghemite particles. J Colloid Interf Sci 265:283–295

    Article  CAS  Google Scholar 

  • Legrand L, Mazerolles L, Chaussé A (2004) The oxidation of carbonate green rust into ferric phases solid state reaction or transformation via solution. Geochim Cosmochim Acta 68:3497–3507

    Article  CAS  Google Scholar 

  • Liu F, Cao P, Zhang H, Tian J, Xiao C, Shen C, Li J, Gao H (2005) Novel nanopyramid arrays of magnetite. Adv Mater 17:1893–1897

    Article  CAS  Google Scholar 

  • Nyirő-Kósa I, Csákberényi-Nagy D, Pósfai M (2009) Size and shape control of precipitated magnetite nanoparticles. Eur J Mineral 21:293–302

    Article  Google Scholar 

  • Refait P, Charton A, Génin J-MR (1998) Identification, composition, thermodynamic and structural properties of a pyroaurite-like iron(II)-iron(III) hydroxy-oxalate green rust. Eur J Solid State Inorg Chem 35:655–666

    Article  CAS  Google Scholar 

  • Salata O (2004) Applications of nanoparticles in biology and medicine. J Nanobiotechnology 2:3

    Article  Google Scholar 

  • Schmitt D, Ouladdiaf B (1998) Absorption correction for annual cylindrical samples in powder neutron diffraction. J Appl Cryst 31:620–624

    Article  CAS  Google Scholar 

  • Srivastava S, Awasthi R, Gajbhiye NS, Agarwal V, Singh A, Yadav A, Gupta RK (2011) Innovative synthesis of citrate-coated superparamagnetic Fe3O4 nanoparticles and its preliminary applications. J Colloid Interf Sci 359:104–111

    Article  CAS  Google Scholar 

  • Sumoondur A, Shaw S, Ahmed I, Benning LG (2008) Green rust as a precursor for magnetite: an in situ synchrotron based study. Min Mag 72:201–204

    Article  CAS  Google Scholar 

  • Wei X, Roger C, Viadero Jr (2006) Synthesis of magnetite nanoparticles with ferric iron recovered from acid mine drainage: implications for environmental engineering. Colloid Surface A 294:280–286

    Article  Google Scholar 

  • Yu D, Sun X, Zou J, Wang Z, Wang F, Tang K (2006) Oriented assembly of Fe3O4 nanoparticles into monodisperse hollow single-crystal microspheres. J Phys Chem B 110:21667–21671

    Article  CAS  Google Scholar 

  • Zahn M (2001) Magnetic fluid and nanoparticle applications to nanotechnology. J Nanopart Res 3:73–78

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by an intergovernmental Hungarian-Slovenian grant for bilateral research cooperation (TÉT-SI-10/2008) and an EU FP7 grant (BIO2MAN4MRI). Ilona Nyirő-Kósa benefited from the ESF Research Training Network program FIMIN. The authors acknowledge the microscopy work support from the Research Institute for Technical Physics and Materials Science, Budapest, Hungary and the Jožef Stefan Institute, Ljubljana, Slovenia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilona Nyirő-Kósa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nyirő-Kósa, I., Rečnik, A. & Pósfai, M. Novel methods for the synthesis of magnetite nanoparticles with special morphologies and textured assemblages. J Nanopart Res 14, 1150 (2012). https://doi.org/10.1007/s11051-012-1150-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-1150-8

Keywords

Navigation