Skip to main content
Log in

Tuning the dipole-directed assembly of core-shell nickel-coated gold nanorods

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

We present the dipole-directed assembly of nickel-coated gold nanorods into nanorings and nanowires. We used two different coating methods to synthesise these core-shell superstructures. Surprisingly, the two coating methods lead to very different kinds of dipole directed assembly. We show that the resultant dipole assembly is very sensitive to the reaction conditions and can be tuned to obtain core-shell nanochains, nanorings, and nanowires. In addition to the presented experimental work, cluster moving Monte Carlo simulations of a system of core-shell nanorods were carried out. These simulations are based on a small number of magnetic interaction energy terms and do not explicitly deal with steric interactions or van der Waals forces. The simulation results are in line with the obtained experimental results, confirming that the magnetic self-assembly of core-shell nanorods can be described by means of a relatively simple model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ahmed W, Laarman RPB, Hellenthal C, Kooij ES, Van Silfhout A, Poelsema B (2010) Dipole directed ring assembly of Ni-coated Au-nanorods. Chem Commun 46:6711–6713

    Article  CAS  Google Scholar 

  • Aoshima M, Satoh A (2006) Two-dimensional Monte Carlo simulations of a colloidal dispersion composed of rod-like ferromagnetic particles in the absence of an applied magnetic field. J Colloid Interface Sci 293:77–87

    Article  CAS  Google Scholar 

  • Butter K, Bomans PHH, Fredrik PM, Vroege GJ, Philipse AP (2003) Direct observation of dipolar chains in iron ferrofluids by cryogenic electron microscopy. Nature Mater 2:88–91

    Article  CAS  Google Scholar 

  • Chen DH, Hsieh CH (2002) Synthesis of nickel nanoparticles in aqueous cationic surfactant solutions. J Mater Chem 12:2412–2415

    Article  CAS  Google Scholar 

  • Gao J, Bender CM, Murphy CJ (2003) Dependence of the gold nanorod aspect ratio on the nature of the directing surfactant in aqueous solution. Langmuir 19:9065–9070

    Article  CAS  Google Scholar 

  • Griffiths DJ (1999) Introduction to electrodynamics. Prentice-Hall International, Upper Saddle River

    Google Scholar 

  • Grzelczak M, Rodríguez-González B, Pérez-Juste J, Liz-Marzán LM (2007) Quasi-epitaxial growth of Ni nanoshells on Au nanorods. Adv Mater 19:2262–2266

    Article  CAS  Google Scholar 

  • Hyeon T (2003) Chemical synthesis of magnetic nanoparticles. Chem Commun 9:927–934

    Article  Google Scholar 

  • Johnson CJ, Dujardin E, Davis SA, Murphy CJ, Mann S (2002) Growth and form of gold nanorods prepared by seed-mediated, surfactant-directed synthesis. J Mater Chem 12:1765–1770

    Article  CAS  Google Scholar 

  • Kodama RH, Berkowitz AE (1999) Atomic-scale magnetic modeling of oxide nanoparticles. Phys Rev B 59:6321–6336

    Article  CAS  Google Scholar 

  • Kooij ES, Poelsema B (2006) Shape and size effects in the optical properties of metallic nanorods. Phys Chem Chem Phys 8:3349–3357

    Article  Google Scholar 

  • Liu CM, Guo L, Wang RM, Deng Y, Xu HB, Yang S (2004) Magnetic nanochains of metal formed by assembly of small nanoparticles. Chem Commun 23:2726–2727

    Article  Google Scholar 

  • Liu M, Guyot-Sionnest P (2005) Mechanism of silver(I)-assisted growth of gold nanorods and bipyramids. J Phys Chem B 109:22,192–22,200

    CAS  Google Scholar 

  • Min Y, Akbulut M, Kristiansen K, Golan Y, Israelachvili J (2008) The role of interparticle and external forces in nanoparticle assembly. Nature Mater 7:527–538

    Article  CAS  Google Scholar 

  • Morimoto H, Katano K, Maekawa T (2009) Ring-chain structural transitions in a ferromagnetic particles system induced by a dc magnetic field. J Chem Phys 131:034,905–1–034,905–5

    Article  Google Scholar 

  • Nikoobakht B, El-Sayed MA (2003) Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater 15:1957–1962

    Article  CAS  Google Scholar 

  • Orendorff CJ, Murphy CJ (2006) Quantitation of metal content in the silver-assisted growth of gold nanorods. J Phys Chem B 110:3990–3994

    Article  CAS  Google Scholar 

  • Pacholski C, Kornowski A, Weller H (2002) Self-assembly of ZnO: from nanodots to nanorods. Angew Chem Int Ed 41:1188–1191

    Article  CAS  Google Scholar 

  • Rothman J, Klui M, Lopez-Diaz L, Vaz CAF, Bleloch A, Bland JAC, Cui Z, Speaks R (2001) Observation of a bi-domain state and nucleation free switching in mesoscopic ring magnets. Phys Rev Lett 86:1098–1101

    Article  CAS  Google Scholar 

  • Sajanlal PR, Pradeep T (2010) Magnetic mesoflowers: synthesis, assembly, and magnetic properties. J Phys Chem C 114:16,051–16,059

    Article  CAS  Google Scholar 

  • Satoh A (1992) A new technique for metropolis Monte Carlo simulation to capture aggregate structures of fine particles: cluster-moving Monte Carlo algorithm. J Colloid Interface Sci 150:461–472

    Article  CAS  Google Scholar 

  • Satoh A (2008) Three-dimensional monte carlo simulations of internal aggregate structures in a colloidal dispersion composed of rod-like particles with magnetic moment normal to the particle axis. J Colloid Interface Sci 318:68–81

    Article  CAS  Google Scholar 

  • Schmid G (2004) Nanoparticles: from theory to application. Wiley-VCH, Weinheim

    Google Scholar 

  • Shevchenko EV, Talapin DV, Schnablegger H, Kornowski A, Festin O, Svedlindh P, Haase M, Weller H (2003) Study of nucleation and growth in the organometallic synthesis of magnetic alloy nanocrystals: the role of nucleation rate in size control of CoPt3 nanocrystals. J Am Chem Soc 125:9090–9101

    Article  CAS  Google Scholar 

  • Shine AD, Armstrong RC (1987) The rotation of a suspended axisymmetric ellipsoid in a magnetic field. Rheol Acta 26:152–161

    Article  CAS  Google Scholar 

  • Sobal NS, Hilgendorff M, Möhwald H, Giersig M, Spasova M, Radetic T, Farle M (2002) Synthesis and structure of colloidal bimetallic nanocrystals: the non-alloying system Ag/Co. Nano Lett 2:621–624

    Article  CAS  Google Scholar 

  • Sun S, Anders S, Thomson T, Baglin JEE, Toney MF, Hamann HF, Murray CB, Terris BD (2003) Controlled synthesis and assembly of FePt nanoparticles. J Phys Chem B 107:5419 –5425

    Article  CAS  Google Scholar 

  • Tavares JM, Weis JJ, Telo da Gama MM (2002) Quasi-two-dimensional dipolar fluid at low densities: Monte Carlo simulations and theory. Phys Rev E 65:061201–0612011

    Article  Google Scholar 

  • Tripp SL, Pusztay SV, Ribbe AE, Wei A (2002) Self-assembly of cobalt nanoparticle rings. J Am Chem Soc 124:7914–7915

    Article  CAS  Google Scholar 

  • Vereda F, De Vicente J, Hidalgo-Álvarez R (2009) Physical properties of elongated magnetic particles: magnetization and friction coefficient anisotropics. ChemPhysChem 10:1165–1179

    Article  CAS  Google Scholar 

  • Wang H, Chen QW, Sun LX, Qi HP, Yang X, Zhou S, Xiong J (2009) Magnetic-field-induced formation of one-dimensional magnetite nanochains. Langmuir 25:7135–7139

    Article  CAS  Google Scholar 

  • Wang N, Cao X, Kong D, Chen W, Guo L, Chen C (2008) Nickel chains assembled by hollow microspheres and their magnetic properties. J Phys Chem C 112:6613–6619

    Article  CAS  Google Scholar 

  • Wei A, Tripp SL, Liu J, Kasama T, Dunin-Borkowski RE (2009) Calixarene-stabilised cobalt nanoparticle rings: self-assembly and collective magnetic properties. Sup Chem 21:189–195

    Article  CAS  Google Scholar 

  • Wen W, Kun F, Pál KF, Zheng DW, Tu KN (1999) Aggregation kinetics and stability of structures formed by magnetic microspheres. Phys Rev E 59:R4758–R4761

    Article  CAS  Google Scholar 

  • Wu SH, Chen DH (2004) Synthesis and stabilization of Ni nanoparticles in a pure aqueous CTAB solution. Chem Lett 33:406–407

    Article  CAS  Google Scholar 

  • Xiong Y, Ye J, Gu X, Chen QW (2007) Synthesis and assembly of magnetite nanocubes into flux-closure rings. J Phys Chem C 111:6998–7003

    Article  CAS  Google Scholar 

  • Zhang X, Zhang Z, Glotzer SC (2007) Simulation study of dipole-induced self-assembly of nanocubes. J Phys Chem C 111:4132–4137

    Article  CAS  Google Scholar 

  • Zitoun D, Respaud M, Fromen MC, Casanove MJ, Lecante P, Amiens C, Chaudret B (2002) Magnetic enhancement in nanoscale CoRh particles. Phys Rev Lett 89:372,031–372,034

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Gregor Hlawacek for operating the helium ion microscope. One of the authors (WA) acknowledges support from the Higher Education Commission in Pakistan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Stefan Kooij.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hellenthal, C., Ahmed, W., Kooij, E.S. et al. Tuning the dipole-directed assembly of core-shell nickel-coated gold nanorods. J Nanopart Res 14, 1107 (2012). https://doi.org/10.1007/s11051-012-1107-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-1107-y

Keywords

Navigation