Skip to main content
Log in

Modified in situ and self-catalytic growth method for fabrication of Ag-coated nanocomposites with tailorable optical properties

  • Brief Communication
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Inorganic or organic solid supported metal nanostructures have been attracted intensive interests in recent years. In this study, a novel and versatile approach for the preparation of solid supported silver nanocomposites is presented for the first time. In this method, the modified aldehyde groups on solid supporters are employed to reduce Ag[(NH3)2]+ ions. The in situ reduced silver nucleus are directly coated on the surfaces of the supports and then used as both seeds and catalysts for the self-catalytic growth of Ag NPs. In this reaction, no additional reduction and protective agents are needed. Moreover, the size of the Ag NPs can be tuned by varying the concentration of the Ag[(NH3)2]+ ions and the reaction time, which leads to the interesting change of the localized surface plasmon resonance absorption of the NPs. Such a synthesis method may realize the separation of nucleation and growth stages for the formation of Ag NPs and is proved to be a versatile method for the preparation of solid supported Ag nanocomposites (PS–Ag, Fe3O4–Ag, and SiO2–Ag), which would benefit the preparations and further applications of functional materials in near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  • Belova V, Möhwald H, Shchukin DG (2008) Sonochemical intercalation of pre-formed gold nanoparticles into multilayered clays. Langmuir 24:9747–9753

    Article  CAS  Google Scholar 

  • Chen CW, Serizawa T, Akashi M (1999) Preparation of platinum colloids on polystyrene nanospheres and their catalytic properties in hydrogenation. Chem Mater 11:1381–1389

    Article  CAS  Google Scholar 

  • Chen GM, Liu SH, Chen SJ, Qi ZN (2001) FTIR spectra, thermal properties, and dispersibility of a polystyrene/montmorillonite nanocomposite. Macromol Chem Phys 202:1189–1193

    Article  CAS  Google Scholar 

  • Cho KH, Choo J, Joo SW (2005) Surface-enhanced Raman scattering and density functional theory calculation of uracil on gold and silver nanoparticle surfaces. Spectrochim Acta A 61:1141–1145

    Article  Google Scholar 

  • Deng ZW, Chen M, Wu LM (2007) Novel method to fabricate SiO2/Ag composite spheres and their catalytic, surface-enhanced Raman scattering properties. J Phys Chem C 111:11692–11698

    Article  CAS  Google Scholar 

  • Eustis S, El-Sayed MA (2006) Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem Soc Rev 35:209–217

    Article  CAS  Google Scholar 

  • Gittins DI, Susha AS, Schoeler B, Caruso F (2002) Dense nanoparticulate thin films via gold nanoparticle self-assembly. Adv Mater 14:508–512

    Article  CAS  Google Scholar 

  • Hermanson GT (2008) Bioconjugate techniques, 2nd edn. Elsevier, pp 265–268

  • Hu HB, Wang ZH, Pan L, Zhao SP, Zhu SY (2010) Ag-coated Fe3O4@SiO2 three-ply composite microspheres: synthesis, characterization, and application in detecting melamine with their surface-enhanced Raman scattering. J Phys Chem C 114:7738–7742

    Article  CAS  Google Scholar 

  • Jain PK, Huang X, El-Sayed IH, El-Sayed MA (2008) Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res 41:1578–1586

    Article  CAS  Google Scholar 

  • Kang T, Yoo SM, Yoon I, Lee SY, Kim B (2010) Patterned multiplex pathogen DNA detection by Au particle-on-wire SERS sensor. Nano Lett 10:1189–1193

    Article  CAS  Google Scholar 

  • Kapoor S, Lawless D, Kennepohl P, Meisel D, Serpone N (1994) Reduction and aggregation of silver ions in aqueous. Langmuir 10:3018–3022

    Article  CAS  Google Scholar 

  • Kim K, Kim HS, Park HK (2006) Facile method to prepare surface-enhanced-raman-scattering-active Ag nanostructures on silica spheres. Langmuir 22:8083–8088

    Article  CAS  Google Scholar 

  • Kobayashi Y, Tadaki Y, Nagao D, Konno M (2005) Deposition of gold nanoparticles on silica spheres by electroless metal plating technique. J Colloid Interface Sci 283:601–604

    Article  CAS  Google Scholar 

  • Koga H, Kitaoka T, Wariishi H (2009) In situ synthesis of silver nanoparticles on zinc oxide whiskers incorporated in a paper matrix for antibacterial applications. J Mater Chem 19:2135–2140

    Article  CAS  Google Scholar 

  • Lah NAC, Johan MR (2011) Facile shape control synthesis and optical properties of silver nanoparticles stabilized by Daxad 19 Surfactant. Appl Surf Sci 257:7494–7500

    Article  CAS  Google Scholar 

  • Lawless D, Kapoor S, Kennepohl P, Meisel D, Serpone N (1994) Reduction and aggregation of silver ions at the surface of colloidal silica. J Phys Chem 98:9619–9625

    Article  CAS  Google Scholar 

  • Li JM, Ma WF, Wei C, You LJ, Guo J, Hu J, Wang CC (2011) Detecting trace melamine in solution by SERS using Ag nanoparticle coated poly(styrene-co-acrylic acid) nanospheres as novel active substrates. Langmuir 27:14539–14544

    Article  CAS  Google Scholar 

  • Liang ZJ, Susha AS, Caruso F (2003) Gold nanoparticle-based core-shell and hollow spheres and ordered assemblies thereof. Chem Mater 15:3176–3183

    Article  CAS  Google Scholar 

  • Liua CH, Tseng WL (2011) Oxidase-functionalized Fe3O4 nanoparticles for fluorescence sensing of specific substrate. Anal Chim Acta 703:87–93

    Article  Google Scholar 

  • Lu L, Wang H, Zhou Y, Xi S, Zhang H, Hu J, Zhao B (2002) Seed-mediated growth of large, monodisperse core-shell gold-silver nanoparticles with ag-like optical properties. Chem Commun 2:144–145

    Article  Google Scholar 

  • Ma JC, Zhang WD (2011) Modified ionic liquid cold-induced aggregation dispersive liquid–liquid microextraction followed by atomic absorption spectrometry for trace determination of zinc in water and food samples. Microchim Acta 175:309–314

    Article  CAS  Google Scholar 

  • Maier SA, Kik PG, Atwater HA, Meltzer S, Harel E, Koel BE, Requicha AAG (2003) Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nat Mater 2:229–232

    Article  CAS  Google Scholar 

  • Mei Y, Sharma G, Lu Y, Ballauff M (2005) High catalytic activity of platinum nanoparticles immobilized on spherical polyelectrolyte brushes. Langmuir 21:12229–12234

    Article  CAS  Google Scholar 

  • Mie G (1908) Beiträge Zur Optik Trüber Medien, Speziell Kolloidaler Metallösungen. Ann Phys 330:377–445

    Article  Google Scholar 

  • Migneault I, Dartiguenave C, Bertrand MJ, Waldron KC (2004) Glutaraldehyde: behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking. Biotechniques 37:790–802

    CAS  Google Scholar 

  • Mizukoshi Y, Makise Y, Shuto T, Hu JW, Tominaga A, Shironita S, Tanabe S (2007) Immobilization of noble metal nanoparticles on the surface of TiO2 by The sonochemical method: photocatalytic production of hydrogen from an aqueous solution of ethanol. Ultrason Sonochem 14:387–392

    Article  CAS  Google Scholar 

  • Moores A, Goettmann F (2006) The plasmon band in noble metal nanoparticles: an introduction to theory and applications. New J Chem 30:1121–1132

    Article  CAS  Google Scholar 

  • Moyer PJ, Schmidt J, Lukas M, Meixner AJ, Sandmann GW, Dietz H, Plieth W (2000) Surface-enhanced Raman scattering spectroscopy of single carbon domains on individual Ag nanoparticles on A 25 ms time scale. J Am Chem Soc 122:5409–5410

    Article  CAS  Google Scholar 

  • Murphy CJ, Sau TK, Gole AM, Orendorff CJ, Gao J, Gou L, Hunyadi SE, Li T (2005) Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J Phys Chem B 109:13857–13870

    Article  CAS  Google Scholar 

  • Oldenburg SJ, Averitt RD, Westcott SL, Halas NJ (1998) Nanoengineering of optical resonances. Chem Phys Lett 288:243–247

    Article  CAS  Google Scholar 

  • Park EY, Kwon OS, Park SJ, Lee JS, You S, Jang J (2012) One-pot synthesis of silver nanoparticles decorated poly(3,4-ethylenedioxythiophene) nanotubes for chemical sensor application. J Mater Chem 22:1521–1526

    Article  CAS  Google Scholar 

  • Perez-Juste J, Pastoriza-Santos I, Liz-Marzan LM, Mulvaney P (2005) Gold nanorods: synthesis, characterization and applications. Coord Chem Rev 249:1870–1901

    Article  CAS  Google Scholar 

  • Pristinski D, Tan S, Erol M, Du H, Sukhishvili S (2006) In situ SERS study of rhodamine 6G adsorbed on individually immobilized Ag nanoparticles. J Raman Spectrosc 37:762–770

    Article  CAS  Google Scholar 

  • Roguska A, Kudelskic A, Pisarek M, Opara M, Janik-Czachor M (2011) Surface-enhanced Raman scattering (SERS) activity of Ag, Au and Cu nanoclusters on TiO(2)-nanotubes/Ti substrate. Appl Surf Sci 257:8182–8189

    Article  CAS  Google Scholar 

  • Shan ZC, Wu JJ, Xu FF, Huang FQ, Ding HM (2008) Highly effective silver/semiconductor photocatalytic composites prepared by a silver mirror reaction. J Phys Chem C 112:15423–15428

    Article  CAS  Google Scholar 

  • Shankar SS, Rai A, Ahmad A, Sastry M (2004) Rapid synthesis of Au, Ag, and bimetallic Au Core-Ag shell nanoparticles using neem (Azadirachta Indica) leaf broth. J Colloid Interface Sci 275:496–502

    Article  CAS  Google Scholar 

  • Shon YS, Cutler E (2004) Aqueous synthesis of alkanethiolate-protected Ag nanoparticles using bunte salts. Langmuir 20:6626–6630

    Article  CAS  Google Scholar 

  • Tang SC, Chen L, Vongehr S, Meng XK (2010) Heterogeneous nucleation and growth of silver nanoparticles on unmodified polystyrene spheres by in situ reduction. Appl Surf Sci 256:2654–2660

    Article  CAS  Google Scholar 

  • Wang WQ, Shi GQ, Zhang RF (2009) Facile fabrication of silver/polypyrrole composites by the modified silver mirror reaction. J Mater Sci 44:3002–3005

    Article  CAS  Google Scholar 

  • Wang C, Wang GT, Wang ZQ, Zhang X (2011) A PH-responsive superamphiphile based on dynamic covalent bonds. Chem Eur J 17:3322–3325

    Article  Google Scholar 

  • Yan JM, Zhang XB, Akita T, Haruta M, Xu Q (2010) One-step seeding growth of magnetically recyclable Au@Co core-shell nanoparticles: highly efficient catalyst for hydrolytic dehydrogenation of ammonia borane. J Am Chem Soc 132:5326–5327

    Article  CAS  Google Scholar 

  • Zhang JH, Chen Z, Wang ZL, Zhang WY, Ming NB (2003) Preparation of monodisperse polystyrene spheres in aqueous alcohol system. Mater Lett 57:4466–4470

    Article  CAS  Google Scholar 

  • Zhang JH, Liu JB, Wang SZ, Zhan P, Wang ZL, Ming NB (2004) Facile methods to coat polystyrene and silica colloids with metal. Adv Funct Mater 14:1089–1096

    Article  CAS  Google Scholar 

  • Zhang SF, Wu W, Xiao XH, Zhou J, Ren F, Jiang CZ (2011) Preparation and characterization of spindle-like Fe3O4 mesoporous nanoparticles. Nanoscale Res Lett 6:89–97

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the National Nature Science Foundation of China (10905043, 11005082, 51171132), the Foundations from Chinese Ministry of Education (311003, 20100141120042, 20110141130004), China Postdoctoral Science Foundation (2012M511661), and the Fundamental Research Funds for the Central Universities for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Ren or Changzhong Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, S., Ren, F., Wu, W. et al. Modified in situ and self-catalytic growth method for fabrication of Ag-coated nanocomposites with tailorable optical properties. J Nanopart Res 14, 1105 (2012). https://doi.org/10.1007/s11051-012-1105-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-1105-0

Keywords

Navigation