Skip to main content
Log in

Preparation and characterizations of naproxen-loaded magnetic nanoparticles coated with PLA-g-chitosan copolymer

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Naproxen (NPX) drug-loaded magnetic nanoparticles (MNPs) have been prepared in a one-step process utilizing a biocompatible polylactide-grafted-chitosan copolymer. The copolymer serves both as a NPX drug carrier as well as a polymeric surfactant for the synthesis of MNPs without the use of any additional surfactant. Highly stable MNPs with high magnetization in the form of maghemite (γ-Fe2O3) are prepared in aqueous media. Effects of preparation conditions on structures and properties of the copolymer-coated and drug-loaded MNPs are investigated by employing particle size and zeta potential measurements, transmission electron microscopy, vibrating sample magnetometer, X-ray diffraction, Fourier-transform infrared, nuclear magnetic resonance, and confocal Raman spectroscopy. The results show that average particle size (150–300 nm), coating efficiency, and coating structures of the resulting MNPs materials are strongly dependent on MNP/copolymer and MNP/NPX ratios in feed. It is also observed that NPX acts as co-surfactant in the drug-loading process, resulting in different encapsulating structures with the variation in the MNP/copolymer and MNP/NPX ratios. Properties of the MNPs materials can be further optimized for use in specific biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Arol AI, Aydogan A (2004) Recovery enhancement of magnetite fines in magnetic separation. Colloids Surf A 232(2–3):151–154

    Article  CAS  Google Scholar 

  • Chairam S, Somsook E (2008) Starch vermicelli template for synthesis of magnetic iron oxide nanoclusters. J Magn Magn Mater 320(15):2039–2043

    Article  CAS  Google Scholar 

  • Chen M, Kim YN, Li C, Cho SO (2008) Preparation and characterization of magnetic nanoparticles and their silica egg-yolk-like nanostructures: a prospective multifunctional nanostructure platform. J Phys Chem C 112(17):6710–6716. doi:10.1021/jp710775j

    Article  CAS  Google Scholar 

  • Cocero MJ, Martín Á, Mattea F, Varona S (2009) Encapsulation and co-precipitation processes with supercritical fluids: fundamentals and applications. J Supercrit Fluids 47(3):546–555

    Article  CAS  Google Scholar 

  • Coleman MM, Graf JF, Painter PC (1991) Specific interactions and the miscibility of polymer blends. Technomic Pub. Co, Lancaster

    Google Scholar 

  • Cornell RM, Schwertmann U (2003) The iron oxides: structure, properties, reactions, occurrences and uses. Wiley-VCH, Weinheim

    Google Scholar 

  • Daou TJ, Grenèche JM, Pourroy G, Buathong S, Derory A, Ulhaq-Bouillet C, Donnio B, Guillon D, Begin-Colin S (2008) Coupling agent effect on magnetic properties of functionalized magnetite-based nanoparticles. Chem Mater 20(18):5869–5875. doi:10.1021/cm801405n

    Article  CAS  Google Scholar 

  • Espartero JL, Rashkov I, Li SM, Manolova N, Vert M (1996) NMR analysis of low molecular weight poly(lactic acid)s. Macromolecules 29(10):3535–3539. doi:10.1021/ma950529u

    Article  CAS  Google Scholar 

  • Feng H, Dong C-M (2006) Preparation, characterization, and self-assembled properties of biodegradable chitosan–poly(l-lactide) hybrid amphiphiles. Biomacromolecules 7(11):3069–3075. doi:10.1021/bm060568l

    Article  CAS  Google Scholar 

  • Garlotta D (2001) A literature review of poly(lactic acid). J Polym Environ 9(2):63–84. doi:10.1023/a:1020200822435

    Article  CAS  Google Scholar 

  • Guardia P, Batlle-Brugal B, Roca AG, Iglesias O, Morales MP, Serna CJ, Labarta A, Batlle X (2007) Surfactant effects in magnetite nanoparticles of controlled size. J Magn Magn Mater 316 (2 special issue):e756–e759. doi:10.1016/j.jmmm.2007.03.085

  • Haneda K, Morrish AH (1976) Magnetite to maghemite transformation in ultrafine particles. J Phys Colloq 38:321–323

    Google Scholar 

  • Iida H, Takayanagi K, Nakanishi T, Osaka T (2007) Synthesis of Fe3O4 nanoparticles with various sizes and magnetic properties by controlled hydrolysis. J Colloid Interface Sci 314(1):274–280. doi:10.1016/j.jcis.2007.05.047

    Article  CAS  Google Scholar 

  • Itoh H, Sugimoto T (2003) Systematic control of size, shape, structure, and magnetic properties of uniform magnetite and maghemite particles. J Colloid Interface Sci 265(2):283–295. doi:10.1016/s0021-9797(03)00511-3

    Article  CAS  Google Scholar 

  • Jang MK, Nah JW (2003) Characterization and modification of low molecular water-soluble chitosan for pharmaceutical application. Bull Korean Chem Soc 24:1303–1307

    Article  CAS  Google Scholar 

  • Jayakumar R, Menon D, Manzoor K, Nair SV, Tamura H (2010) Biomedical applications of chitin and chitosan based nanomaterials—a short review. Carbohydr Polym 82(2):227–232. doi:10.1016/j.carbpol.2010.04.074

    Article  CAS  Google Scholar 

  • Khaleel AA (2004) Nanostructured pure γ-Fe2O3 via forced precipitation in an organic solvent. Chem Eur J 10(4):925–932. doi:10.1002/chem.200305135

    Article  CAS  Google Scholar 

  • Kim DK, Mikhaylova M, Zhang Y, Muhammed M (2003) Protective coating of superparamagnetic iron oxide nanoparticles. Chem Mater 15(8):1617–1627. doi:10.1021/cm021349j

    Article  CAS  Google Scholar 

  • Kim JS, Yoon T-J, Yu KN, Kim BG, Park SJ, Kim HW, Lee KH, Park SB, Lee J-K, Cho MH (2006) Toxicity and tissue distribution of magnetic nanoparticles in mice. Toxicol Sci 89(1):338–347. doi:10.1093/toxsci/kfj027

    Article  CAS  Google Scholar 

  • Legodi MA, de Waal D (2007) The preparation of magnetite, goethite, hematite and maghemite of pigment quality from mill scale iron waste. Dyes Pigment 74(1):161–168

    Article  CAS  Google Scholar 

  • Liao H, Chen D, Yuan L, Zheng M, Zhu Y, Liu X (2010) Immobilized cellulase by polyvinyl alcohol/Fe2O3 magnetic nanoparticle to degrade microcrystalline cellulose. Carbohydr Polym 82(3):600–604. doi:10.1016/j.carbpol.2010.05.021

    Article  CAS  Google Scholar 

  • Lin C-L, Lee C-F, Chiu W-Y (2005) Preparation and properties of poly(acrylic acid) oligomer stabilized superparamagnetic ferrofluid. J Colloid Interface Sci 291(2):411–420

    Article  CAS  Google Scholar 

  • Lübbe AS, Alexiou C, Bergemann C (2001) Clinical applications of magnetic drug targeting. J Surg Res 95(2):200–206

    Article  Google Scholar 

  • Matutes-Aquino J, García-Casillas P, Ayala-Valenzuela O, García-García S (1999) Study of iron oxides obtained by decomposition of an organic precursor. Mater Lett 38(3):173–177

    Article  CAS  Google Scholar 

  • Mikhaylova M, Kim DK, Bobrysheva N, Osmolowsky M, Semenov V, Tsakalakos T, Muhammed M (2004) Superparamagnetism of magnetite nanoparticles: dependence on surface modification. Langmuir 20(6):2472–2477. doi:10.1021/la035648e

    Article  CAS  Google Scholar 

  • Mura P, Zerrouk N, Mennini N, Maestrelli F, Chemtob C (2003) Development and characterization of naproxen–chitosan solid systems with improved drug dissolution properties. Eur J Pharm Sci 19(1):67–75

    Article  CAS  Google Scholar 

  • Narang AS, Delmarre D, Gao D (2007) Stable drug encapsulation in micelles and microemulsions. Int J Pharm 345:9–25

    Article  CAS  Google Scholar 

  • Opaprakasit P, Opaprakasit M (2008) Thermal properties and crystallization behaviors of polylactide and its enantiomeric blends. Macromol Symp 264(1):113–120

    Article  CAS  Google Scholar 

  • Opaprakasit P, Opaprakasit M, Tangboriboonrat P (2007) Crystallization of polylactide and its stereocomplex investigated by two-dimensional Fourier transform infrared correlation spectroscopy employing carbonyl overtones. Appl Spectrosc 61(12):1352–1358

    Article  CAS  Google Scholar 

  • Paramês ML, Viskadourakis Z, Rogalski MS, Mariano J, Popovici N, Giapintzakis J, Conde O (2007) Magnetic properties of Fe3O4 thin films grown on different substrates by laser ablation. Appl Surf Sci 253(19):8201–8205

    Article  Google Scholar 

  • Qu S, Wang J, Kong J, Yang P, Chen G (2007) Magnetic loading of carbon nanotube/nano-Fe3O4 composite for electrochemical sensing. Talanta 71(3):1096–1102

    Article  CAS  Google Scholar 

  • Roca AG, Marco JF, Del Puerto Morales M, Serna CJ (2007) Effect of nature and particle size on properties of uniform magnetite and maghemite nanoparticles. J Phys Chem C 111(50):18577–18584

    Article  CAS  Google Scholar 

  • Sinha VR, Singla AK, Wadhawan S, Kaushik R, Kumria R, Bansal K, Dhawan S (2004) Chitosan microspheres as a potential carrier for drugs. Int J Pharm 274(1–2):1–33

    CAS  Google Scholar 

  • Socrates G (1994) Infrared characteristic group frequencies: tables and charts, 2nd edn. Wiley, Chichester

    Google Scholar 

  • Sun J, Zhou S, Hou P, Yang Y, Weng J, Li X, Li M (2007) Synthesis and characterization of biocompatible Fe3O4 nanoparticles. J Biomed Mater Res Part A 80A(2):333–341. doi:10.1002/jbm.a.30909

    Article  CAS  Google Scholar 

  • Teja AS, Koh P-Y (2009) Synthesis, properties, and applications of magnetic iron oxide nanoparticles. Prog Cryst Growth Charact Mater 55(1–2):22–45

    Article  CAS  Google Scholar 

  • Wu Y, Li M, Gao H (2009) Polymeric micelle composed of PLA and chitosan as a drug carrier. J Polym Res 16(1):11–18. doi:10.1007/s10965-008-9197-z

    Article  CAS  Google Scholar 

  • Zhang D, Tong Z, Li S, Zhang X, Ying A (2008) Fabrication and characterization of hollow Fe3O4 nanospheres in a microemulsion. Mater Lett 62(24):4053–4055

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study is supported by the National Research University Project of Thailand, Office of Higher Education Commission. Financial support provided from The Thailand Research Fund/Thailand Office of Higher Education Commission (RTA5480007) to P.T., is gratefully acknowledged. C.T. thanks the support from SIIT, Thammasat University. The authors are also grateful to P. Jantaratana for his magnetization set-up and measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Opaprakasit.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thammawong, C., Sreearunothai, P., Petchsuk, A. et al. Preparation and characterizations of naproxen-loaded magnetic nanoparticles coated with PLA-g-chitosan copolymer. J Nanopart Res 14, 1046 (2012). https://doi.org/10.1007/s11051-012-1046-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-1046-7

Keywords

Navigation