Skip to main content
Log in

Thermal and chemical durability of nitrogen-doped carbon nanotubes

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Nitrogen-doped carbon nanotubes (CN x tubes) with nitrogen content of 7.6 at.% are synthesized on carbon papers. Thermal and chemical stability of the nanotubes are investigated by thermogravimetric analysis, differential scanning calorimetry and X-ray photoelectron spectroscopy techniques. The results indicate that the nitrogen can be firmly kept in the nanotubes after annealing at 300 °C in air. Under an argon atmosphere, the nitrogen would not release until 670 °C, and half of the nitrogen incorporated is released after annealing at 700 °C for 30 min. Chemical stability investigation indicates that the nitrogen incorporated in the nanotubes is very stable under the thermal and acid environment comparable to working condition of proton exchange membrane (PEM) fuel cells. Profile of the nitrogen species inside the nanotubes reveals that graphite-like nitrogen releases slower than any other kind of nitrogen in the nanotubes during the chemical stability measurement. These CN x tubes synthesized by this simple chemical vapor deposition method are expected to be suitable for many applications, such as PEM fuel cells that work under both thermal and corrosive conditions and some other mild thermal environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Chen H, Yang Y, Hu Z, Huo K, Ma Y, Chen Y et al (2006) Synergism of C5N six-membered ring and vapor–liquid–solid growth of CNx nanotubes with pyridine precursor. J Phys Chem B 110(3):16422–16427

    Article  CAS  Google Scholar 

  • Choi HC, Baes SY, Park J, Seo K, Kim C, Kim B et al (2004) Experimental and theoretical studies on the structure of N-doped carbon nanotubes: possibility of intercalated molecular N2. Appl Phys Lett 85(23):5742–5744

    Article  CAS  Google Scholar 

  • Choi HC, Bae SY, Jang WS, Park J, Song HJ, Shin HJ et al (2005) Release of N2 from the carbon nanotubes via high-temperature annealing. J Phys Chem B 109:1683–1688

    Article  CAS  Google Scholar 

  • Huang W, Taylor S, Fu K, Lin Y, Zhang D, Hanks TW et al (2002) Attaching proteins to carbon nanotubes via dimide-activated amidation. Nano Lett 2(4):311–314

    Article  CAS  Google Scholar 

  • Huang W, Wang Y, Luo G, Wei F (2003) 99.9 % purity multi-walled carbon nanotubes by vacuum high-temperature annealing. Carbon 41(13):2585–2590

    Article  CAS  Google Scholar 

  • Kapteijn F, Moulijn JA, Matzner S, Boehm HP (1999) The development of nitrogen functionality in model chars during gasification in CO2 and O2. Carbon 37(7):1143–1150

    Article  CAS  Google Scholar 

  • Kwon JY, Kim HD (2005) Preparation and properties of acid-treated multiwalled carbon nanotube/waterborne polyurethane nanocomposites. J Appl Polym Sci 96:595–604

    Article  CAS  Google Scholar 

  • Liu H, Zhang Y, Arato D, Li R, Mérel P, Sun X (2008) Aligned multi-walled carbon nanotubes on different substrates by floating catalyst chemical vapor deposition: critical effects of buffer layer. Surf Coat Tech 202:4114–4120

    Article  CAS  Google Scholar 

  • Liu H, Zhang Y, Li R, Sun X, Désilets S, Abou-Rachid H et al (2010) Structural and morphological control, nitrogen incorporation and stability of aligned nitrogen-doped carbon nanotubes. Carbon 48:1498–1507

    Article  CAS  Google Scholar 

  • Maldonado S, Stevenson KJ (2005) Influence of nitrogen doping on oxygen reduction electrocatalysis at carbon nanofiber electrodes. J Phys Chem B 109:4707–4716

    Article  CAS  Google Scholar 

  • Maldonado S, Morin S, Stevenson KJ (2006) Structure, composition, and chemical reactivity of carbon nanotubes by selective nitrogen doping. Carbon 44(8):1429–1437

    Article  CAS  Google Scholar 

  • Miyamoto Y, Cohen ML, Louie SG (1997) Theoretical investigation of graphitic carbon nitride and possible tubule forms. Solid State Commun 102(8):605–608

    Article  CAS  Google Scholar 

  • Nath M, Satishikumar BC, Gobindaraj A, Vinod CP, Rao CNR (2000) Production of bundles of aligned carbon and carbon–nitrogen nanotubes by the pyrolysis of precursors on silica-supported iron and cobalt catalysts. Chem Phys Lett 322(5):333–340

    Article  CAS  Google Scholar 

  • Nevcidomskyy AH, Csanyi G, Payne C (2003) Chemically active substitutional nitrogen impurity in carbon nanotubes. Phys Rev Lett 91(10):105502

    Article  Google Scholar 

  • Reyes-Reyes M, Grobert N, Kamalakaran R, Seeger T, Golberg E, Ruhle M et al (2004) Efficient encapsulation of gaseous nitrogen inside carbon nanotubes with bamboo-like structure using aerosol thermolysis. Chem Phys Lett 396:167–173

    Article  CAS  Google Scholar 

  • Rossi C, Zhang K, Esteve D, Alphose P, Tailhades P, Vahlas C (2007) Nanoenergetic materials for MEMS: a review. J Microelectromech Syst 16(4):919–931

    Article  CAS  Google Scholar 

  • Subramanian NP, Li X, Nallathambi V, Kumaraguru SP, Colon-Mercado H, Wu G et al (2009) Nitrogen-modified carbon-based catalysts for oxygen reduction reaction polymer electrolyte membrane fuel cells. J Power Sources 188(1):38–44

    Article  CAS  Google Scholar 

  • Sun X, Li R, Villers D, Dodelet JP, Desilets S (2003) Composite electrodes made of Pt nanoparticles deposited on carbon nanotubes grown on fuel cell backings. Chem Phys Lett 379(1–2):99–104

    Article  CAS  Google Scholar 

  • Sun X, Li R, Stansfield B, Dodelet JP, Menard G, Desilets S (2007) Controlled synthesis of pointed carbon nanotubes. Carbon 45(4):732–737

    Article  CAS  Google Scholar 

  • Tang C, Bando Y, Golberg D, Xu F (2004) Structure and nitrogen incorporation of carbon nanotubes synthesized by catalytic pyrolysis of dimethylformamide. Carbon 42(12–13):2625–2633

    Article  CAS  Google Scholar 

  • Tao XY, Zhang XB, Sun FY, Cheng JP, Liu F, Luo ZQ (2007) Large-scale CVD synthesis of nitrogen-doped multi-walled carbon nanotubes with controllable nitrogen content on a Co x Mg1–x MoO4 catalyst. Diamond Relat Mater 16(3):425–430

    Article  CAS  Google Scholar 

  • Villers D, Sun SH, Serventi AM, Dodelet JP, Desilets S (2006) Characterization of Pt nanoparticles deposited onto carbon nanotubes grown on carbon paper and evaluation of this electrode for the reduction of oxygen. J Phys Chem B 110(51):25916–25925

    Article  CAS  Google Scholar 

  • Wang EG (2006) Nitrogen-induced carbon nanobells and their properties. J Mater Res 21(11):2767–2773

    Article  CAS  Google Scholar 

  • Zhao M, Xia Y, Ma Y, Ying M, Liu X, Mei L (2002) Exohedral and endohedral adsorption of nitrogen on the sidewall of single-walled carbon nanotubes. Phys Rev B 66:155403

    Article  Google Scholar 

  • Zhao YC, Lu DL, Zhou HW, Tian YJ (2005) Turbostratic carbon nitride prepared by pyrolysis of melamine. J Mater Sci 40:2645–2647

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Department of National Defense (DND), Natural Sciences and Engineering Research Council of Canada (NSERC), Canada Research Chair (CRC) Program, Canada Foundation for Innovation (CFI), Ontario Research Fund (ORF), Ontario Early Researcher Award (ERA) and the University of Western Ontario. We are in debt to David Tweddell, Fred Pearson, Ronald Smith, Mark Biesinger, Ross Davidson and Todd Simpson for their kind help and fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueliang Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, H., Zhang, Y., Li, R. et al. Thermal and chemical durability of nitrogen-doped carbon nanotubes. J Nanopart Res 14, 1016 (2012). https://doi.org/10.1007/s11051-012-1016-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-1016-0

Keywords

Navigation