Skip to main content
Log in

Enzyme-encapsulated silica nanoparticle for cancer chemotherapy

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

A novel horseradish peroxidase-encapsulated silica nanoparticle (SNP) was generated in this study under relatively mild conditions. The generated enzyme-encapsulated SNP were relatively uniform in size (average 70 ± 14.3 nm), monodispersed, and spherical, as characterized by transmission electron microscopy and scanning electron microscopy. The horseradish peroxidase encapsulated in silica nanoparticle exhibits biological properties, such as a pH-dependent activity profile and k m value, similar to that of free enzymes. Furthermore, enzyme-encapsulated SNP exhibited good operational stability for the repetitive usage with a relative standard deviation of 5.1 % (n = 10) and a high stability for long term storage (>60 days) at 4 °C. The feasibility of using enzyme-encapsulated SNP in prodrug cancer therapy was also demonstrated by its capability to convert the prodrug indole-3-acetic acid into cytotoxic peroxyl radicals and trigger the death of tumor cells. These results indicate that the developed enzyme-encapsulated SNP has potential in the applications of prodrug cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmad S, Tester RF, Corbett A, Karkalas J (2006) Dextran and 5-aminosalicylic acid (5-ASA) conjugates: synthesis, characterisation and enzymic hydrolysis. Carbohydr Res 341:2694–2701

    Article  CAS  Google Scholar 

  • Alexis F, Rhee JW, Richie JP, Radovic-Moreno AF, Langer R, Farokhzad OC (2008) New frontiers in nanotechnology for cancer treatment. Urol Oncol: Semin Ori Invest 26:74–85

    Article  CAS  Google Scholar 

  • Amine A, Mohammadi H, Bourais I, Palleschi G (2006) Enzyme inhibition-based biosensors for food safety and environmental monitoring. Biosens Bioelectron 21:1405–1423

    Article  CAS  Google Scholar 

  • Bae KH, Chung HJ, Park TG (2011) Nanomaterials for cancer therapy and imaging. Mol Cell 31:295–302

    Article  CAS  Google Scholar 

  • Bagshawe K (1990) Antibody-directed enzyme/prodrug therapy (ADEPT). Biochem Soc Trans 18:750–752

    CAS  Google Scholar 

  • Baroli B, Ennas MG, Loffredo F, Isola M, Pinna R, López-Quintela MA (2007) Penetration of metallic nanoparticles in human full-thickness skin. J Invest Dermatol 127:1701–1712

    CAS  Google Scholar 

  • Bauduin P, Nohmie F, Touraud D, Neueder R, Kunz W, Ninham BW (2006) Hofmeister specific-ion effects on enzyme activity and buffer pH: horseradish peroxidase in citrate buffer. J Mol Liq 123:14–19

    Article  CAS  Google Scholar 

  • Candeias LP, Folkes LK, Porssa M, Parrick J, Wardman P (1996) Rates of reaction of indoleacetic acids with horseradish peroxidase compound I and their dependence on the redox potentials. Biochemistry 35:102–108

    Article  CAS  Google Scholar 

  • Connors TA (1995) The choice of prodrugs for gene directed enzyme prodrug therapy of cancer. Gene Ther 2:702–709

    CAS  Google Scholar 

  • Connors TA, Knox RJ (1995) Prodrugs in cancer chemotherapy. Stem Cells 13:501–511

    Article  CAS  Google Scholar 

  • Farokhzad OC, Langer R (2006) Nanomedicine: developing smarter therapeutic and diagnostic modalities. Adv Drug Deliv Rev 58:1456–1459

    Article  CAS  Google Scholar 

  • Ferrari M (2005) Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 5:161–171

    Article  CAS  Google Scholar 

  • Fuchs S, Kapp T, Otto H, Schoneberg T, Franke P, Gust R, Schlüter AD (2004) A set of surface-modified dendrimers with potential application as drug delivery vehicles: synthesis, in vitro cytotoxicity, and intracellular localization. Chemistry 10:1167–1192

    Article  CAS  Google Scholar 

  • Gallati H (1979) Horseradish peroxidase: a study of the kinetics and the determination of optimal reaction conditions, using hydrogen peroxide and 2,2′-azinobis 3-ethylbenzthiazoline-6-sulfonic acid (ABTS) as substrates. J Clin Chem Clin Biochem 17:1–7

    CAS  Google Scholar 

  • Gazarian IG, Lagrimini LM, Mellon FA, Naldrett MJ, Ashby GA, Thorneley RN (1998) Identification of skatolyl hydroperoxide and its role in the peroxidase-catalysed oxidation of indol-3-yl acetic acid. Biochem J 333:223–232

    CAS  Google Scholar 

  • Gesson JP, Jacquesy JC, Mondon M, Petit P, Renoux B, Andrianomenjanahary S, Van Dufat-Trinh H, Koch M et al (1994) Prodrugs of anthracyclines for chemotherapy via enzyme-monoclonal antibody conjugates. Anticancer Drug Des 9:409–423

    CAS  Google Scholar 

  • Gopin A, Ebner S, Attali B, Shabat D (2006) Enzymatic activation of second-generation dendritic prodrugs: conjugation of self-immolative dendrimers with poly(ethylene glycol) via click chemistry. Bioconj Chem 17:1432–1440

    Article  CAS  Google Scholar 

  • Guthaus E, Burgle M, Schmiedeberg N, Hocke S, Eickler A, Kramer MD, Sweep CG, Magdolen V et al (2002) uPA-silica-particles (SP-uPA): a novel analytical system to investigate uPA–uPAR interaction and to test synthetic uPAR antagonists as potential cancer therapeutics. Biol Chem 383:207–216

    Article  CAS  Google Scholar 

  • Han HK, Amidon GL (2000) Targeted prodrug design to optimize drug delivery. AAPS PharmSci 2:E6

    CAS  Google Scholar 

  • HariKrishna D, Rao AR, Krishna DR (2003) Selective activation of anthracycline prodrugs for use in conjunction with ADEPT. Drug News Perspect 16:309–318

    Article  CAS  Google Scholar 

  • Hiner ANP, Hernández-Ruíz J, Amao MB, García-Cánovas F, Acosta M (1996) A comparative study of the purity, enzyme activity, and inactivation by hydrogen peroxide of commercially available horseradish peroxidase isoenzymes A and C. Biotechnol Bioeng 50:655–662

    Article  CAS  Google Scholar 

  • Hinman RL, Lang J (1965) Peroxidase-catalyzed oxidation of indole-3-acetic acid. Biochemistry 4:144–158

    Article  CAS  Google Scholar 

  • Ho W-J, Yuan C-J, Reiko O (2006) Application of SiO2-poly(dimethylsiloxane) hybrid material in the fabrication of amperometric biosensor. Anal Chim Acta 572:248–252

    Article  CAS  Google Scholar 

  • Hock SC, Ying YM, Wah CL (2011) A review of the current scientific and regulatory status of nanomedicines and the challenges ahead. PDA J Pharm Sci Technol 65:177–195

    CAS  Google Scholar 

  • Huysmans G, Ranquin A, Wyns L, Steyaert J, Van Gelder P (2005) Encapsulation of therapeutic nucleoside hydrolase in functionalised nanocapsules. J Control Release 102:171–179

    Article  CAS  Google Scholar 

  • Karlsson KH (1999) Bone implants—a challenge to materials science. Ann Chir Gynaecol 88:226–235

    CAS  Google Scholar 

  • Kawanabe K, Yamamuro T, Nakamura T, Kotani S (1991) Effects of injecting massive amounts of bioactive ceramics in mice. J Biomed Mater Res 25:117–1128

    Article  CAS  Google Scholar 

  • Kim DS, Jeon SE, Park KC (2004) Oxidation of indole-3-acetic acid by horseradish peroxidase induces apoptosis in G361 human melanoma cells. Cell Signal 16:81–88

    Article  CAS  Google Scholar 

  • Kobayashi S, Sugioka K, Nakano H, Nakano M, Tero-Kubota S (1984) Analysis of the stable end products and intermediates of oxidative decarboxylation of indole-3-acetic acid by horseradish peroxidase. Biochemistry 23:4589–4597

    Article  CAS  Google Scholar 

  • Kratz F, Warnecke A, Schmid B, Chung DE, Gitzel M (2006) Prodrugs of anthracyclines in cancer chemotherapy. Curr Med Chem 13:477–523

    Article  CAS  Google Scholar 

  • Li X, Zhang Y, Yan R, Jia W, Yuan M, Deng X, Huang Z (2000) Influence of process parameters on the protein stability encapsulated in poly-DL-lactide-poly(ethylene glycol) microspheres. J Control Release 68:41–52

    Article  CAS  Google Scholar 

  • Matsoukas T, Gulari E (1988) Dynamics of growth of silica particles from ammonia-catalyzed hydrolysis of tetra-ethyl-orthosilicate. J Colloid Interface Sci 124:252–261

    Article  CAS  Google Scholar 

  • Mauger AB, Burke PJ, Somani HH, Friedlos F, Knox RJ (1994) Self-immolative prodrugs: candidates for antibody-directed enzyme prodrug therapy in conjunction with a nitroreductase enzyme. J Med Chem 37:3452–3458

    Article  CAS  Google Scholar 

  • Nishi Y (2003) Enzyme/abzyme prodrug activation systems: potential use in clinical oncology. Curr Pharm Des 9:2113–2130

    Article  CAS  Google Scholar 

  • Park SK, Kim KD, Kim HT (2002) Preparation of silica nanoparticles: determination of the optimal synthesis conditions for small and uniform particles. Colloids Surf A Physicochem Eng Aspects 197:7–17

    Article  CAS  Google Scholar 

  • Petri-Fink A, Chastellain M, Juillerat-Jeanneret L, Ferrari A, Hofmann H (2005) Development of functionalized superparamagnetic iron oxide nanoparticles for interaction with human cancer cells. Biomaterials 26:2685–2694

    Article  CAS  Google Scholar 

  • Qhobosheane M, Santra S, Zhang P, Tan W (2001) Biochemically functionalized silica nanoparticles. Analyst 126:1274–1278

    Article  CAS  Google Scholar 

  • Rodriguez-López JN, Gilabert MA, Tudela J, Thorneley RN, Garcia-Cánovas F (2000) Reactivity of horseradish peroxidase compound II toward substrates: kinetic evidence for a two-step mechanism. Biochemistry 39:13201–13209

    Article  Google Scholar 

  • Rudolphi A, Vielhauer S, Boos KS, Seidel D, Bathge IM, Berger H (1995) Coupled-column liquid chromatographic analysis of epirubicin and metabolites in biological material and its application to optimization of liver cancer therapy. J Pharm Biomed Anal 13:615–623

    Article  CAS  Google Scholar 

  • Shchipunov YA, Karpenko TY, Bakunina IY, Burtseva YV, Zvyagintseva TN (2004) A new precursor for the immobilization of enzymes inside sol–gel-derived hybrid silica nanocomposites containing polysaccharides. J Biochem Biophys Methods 58:25–38

    Article  CAS  Google Scholar 

  • Smith AM, Morrison WL, Milham PJ (1982) Oxidation of indole-3-acetic acid by peroxidase: involvement of reduced peroxidase and compound III with superoxide as a product. Biochemistry 21:4414–4419

    Article  CAS  Google Scholar 

  • Syrigos KN, Epenetos AA (1999) Antibody directed enzyme prodrug therapy (ADEPT): a review of the experimental and clinical considerations. Anticancer Res 19:605–613

    CAS  Google Scholar 

  • Van Helden AK, Jansen JW, Vrij A (1981) Preparation and characterization of spherical monodisperse silica dispersions in nonaqueous solvents. J Colloid Interface Sci 81:354–368

    Article  Google Scholar 

  • Wardman P (2002) Indole-3-acetic acids and horseradish peroxidase: a new prodrug/enzyme combination for targeted cancer therapy. Curr Pharm Res 8:1363–1374

    Article  CAS  Google Scholar 

  • Wu X, Narsimha G (2008) Characterization of secondary and tertiary conformational changes of beta-lactoglobulin adsorbed on silica nanoparticle surfaces. Langmuir 24:4989–4998

    Article  CAS  Google Scholar 

  • Wu S, Lin J, Chan SI (1994) Oxidation of dibenzothiophene catalyzed by heme-containing enzymes encapsulated in sol–gel glass. A new form of biocatalysts. Appl Biochem Biotechnol 47:11–20

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Hoi-Ping Shi and the laboratory of Dr. Tung-Kung Wu for technical support. The authors would like to thank the ATU plan of Ministry of Education of the R.O.C. (Taiwan) and the National Science Council of the R.O.C. (Taiwan) under Contract No. NSC 97-2311-B-009-001-MY3 for financially supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiun-Jye Yuan.

Additional information

Y.-R. Chiu and W.-J. Ho contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 483 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chiu, YR., Ho, WJ., Chao, JS. et al. Enzyme-encapsulated silica nanoparticle for cancer chemotherapy. J Nanopart Res 14, 829 (2012). https://doi.org/10.1007/s11051-012-0829-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-0829-1

Keywords

Navigation