Skip to main content

Advertisement

Log in

Fabrication of silk fibroin nanoparticles for controlled drug delivery

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

A novel solution-enhanced dispersion by supercritical CO2 (SEDS) was employed to prepare silk fibroin (SF) nanoparticles. The resulting SF nanoparticles exhibited a good spherical shape, a smooth surface, and a narrow particle size distribution with a mean particle diameter of about 50 nm. The results of X-ray powder diffraction, thermo gravimetry-differential scanning calorimetry, and Fourier transform infrared spectroscopy analysis of the SF nanoparticles before and after ethanol treatment indicated conformation transition of SF nanoparticles from random coil to β-sheet form and thus water insolubility. The MTS assay also suggested that the SF nanoparticles after ethanol treatment imposed no toxicity. A non-steroidal anti-inflammatory drug, indomethacin (IDMC), was chosen as the model drug and was encapsulated in SF nanoparticles by the SEDS process. The resulting IDMC–SF nanoparticles, after ethanol treatment, possessed a theoretical average drug load of 20%, an actual drug load of 2.05%, and an encapsulation efficiency of 10.23%. In vitro IDMC release from the IDMC–SF nanoparticles after ethanol treatment showed a significantly sustained release over 2 days. These studies of SF nanoparticles indicated the suitability of the SF nanoparticles prepared by the SEDS process as a biocompatible carrier to deliver drugs and also the feasibility of using the SEDS process to reach the goal of co-precipitation of drug and SF as composite nanoparticles for controlled drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Amiraliyan N, Nouri M, Haghighat Kish M (2010) Structural characterization and mechanical properties of electrospun silk fibroin nanofiber mats. Polym Sci A 52:407–412

    Article  Google Scholar 

  • Berthold A, Cremer K, Kreuter J (1996) Preparation and characterization of chitosan microspheres as drug carriers for prednisolone sodium phosphate as model for anti inflammatory drugs. J Control Release 39:17–25

    Article  CAS  Google Scholar 

  • Blasig A, Shi C, Enick RM (2002) Effect of concentration and degree of saturation on RESS of a CO2-soluble fluoropolymer. Ind Eng Chem Res 41:4976–4983

    Article  CAS  Google Scholar 

  • Cao ZB, Chen X, Yao JR, Huang L, Shao ZZ (2007) The preparation of regenerated silk fibroin microspheres. Soft Matter 3:910–915

    Article  CAS  Google Scholar 

  • Chen AZ, Pu XM, Kang YQ, Liao L, Yao YD, Yin GF (2006) Preparation of 5-fluorouracil-poly(l-lactide) microparticles using solution-enhanced dispersion by supercritical CO2. Macromol Rapid Commun 27:1254–1259

    Article  CAS  Google Scholar 

  • Chen L, Xie ZG, Hu JL, Chen XS, Jing XB (2007) Enantiomeric PLA–PEG block copolymers and their stereocomplex micelles used as rifampin delivery. J Nanopart Res 9:777–785

    Article  Google Scholar 

  • Chen AZ, Li Y, Chau FT, Lau TY, Hu JY, Zhao Z, Mok DKW (2009) Microencapsulation of puerarin nanoparticles by poly(l-lactide) in a supercritical CO2 process. Acta Biomater 5:2913–2919

    Article  CAS  Google Scholar 

  • Chong EJ, Phan TT, Lim IJ, Zhang YZ, Bay BH, Ramakrishna S, Lim CT (2007) Evaluation of electrospun PCL/gelatin nanofibrous scaffold for wound healing and layered dermal reconstitution. Acta Biomater 3:321–330

    Article  CAS  Google Scholar 

  • Daamen WF, Veerkamp JH, van Hest JC, van Kuppevelt TH (2007) Elastin as a biomaterial for tissue engineering. Biomaterials 28:4378–4398

    Article  CAS  Google Scholar 

  • Grande CJ, Torres FG, Gomez CM, Bañó MC (2009) Nanocomposites of bacterial cellulose/hydroxyapatite for biomedical applications. Acta Biomater 5:1605–1615

    Article  CAS  Google Scholar 

  • Jiao H, Yao J, Yang Y, Chen X, Lin W, Li Y, Gu X, Wang X (2009) Chitosan/polyglycolic acid nerve grafts for axon regeneration from prolonged axotomized neurons to chronically denervated segments. Biomaterials 30:5004–5018

    Article  CAS  Google Scholar 

  • Kang YQ, Wu J, Yin GF, Huang ZB, Yao YD, Liao XM, Chen AZ, Pu XM (2008a) Preparation, characterization and in vitro cytotoxicity of indomethacin-loaded PLLA/PLGA microparticles using supercritical CO2 technique. Eur J Pharm Biopharm 70:85–97

    Article  CAS  Google Scholar 

  • Kang YQ, Yin GF, Ping OY, Huang ZB, Yao YD, Liao XM, Chen AZ, Pu XM (2008b) Preparation of PLLA/PLGA microparticles using solution enhanced dispersion by supercritical fluids (SEDS). J Colloid Interface Sci 322:87–94

    Article  CAS  Google Scholar 

  • Kim UJ, Park J, Li C, Jin HJ, Valluzzi R, Kaplan DL (2004) Structure and properties of silk hydrogels. Biomacromolecules 5:786–792

    Article  CAS  Google Scholar 

  • Kim UJ, Park J, Kim HJ, Wada M, Kaplan DL (2005) Three dimensional aqueous-derived biomaterial scaffolds from silk fibroin. Biomaterials 26:2775–2785

    Article  CAS  Google Scholar 

  • Kundu J, Patra C, Kundu SC (2008) Design, fabrication and characterization of silk fibroin-HPMC-PEG blended films as vehicle for transmucosal delivery. Mater Sci Eng C 28:1376–1380

    Article  CAS  Google Scholar 

  • Kundu J, Chung YI, Kim YH, Tae G, Kundu SC (2010) Silk fibroin nanoparticles for cellular uptake and control release. Int J Pharm 388:242–250

    Article  CAS  Google Scholar 

  • Lewinski N, Colvin V, Drezek R (2008) Cytotoxicity of nanoparticles. Small 4:26–49

    Article  CAS  Google Scholar 

  • Liu LX, Bai YY, Song CN, Zhu DW, Song LP, Zhang HL, Dong X, Leng XG (2010) The impact of arginine-modified chitosan–DNA nanoparticles on the function of macrophages. J Nanopart Res 12:1637–1644

    Article  CAS  Google Scholar 

  • Marelli B, Alessandrino A, Farè S, Freddi G, Mantovani D, Tanzi MC (2010) Compliant electrospun silk fibroin tubes for small vessel bypass grafting. Acta Biomater 6:4019–4026

    Article  CAS  Google Scholar 

  • Marques AP, Cruz HR, Coutinho OP, Reis RL (2005) Effect of starch-based biomaterials on thein vitro proliferation and viability of osteoblast-like cells. J Mater Sci Mater Med 16:833–842

    Article  CAS  Google Scholar 

  • Meclean S, Processer E, O’Malley D, Clark N, Ramtoola Z, Brayden D (1998) Binding and uptake of biodegradable poly-dl-lactide micro- and nanoparticles in intestinal epithelia. Eur J Pharm Sci 6:153–163

    Article  Google Scholar 

  • Nam K, Kimura T, Funamoto S, Kishida A (2010) Preparation of a collagen/polymer hybrid gel designed for tissue membranes. Part I: controlling the polymer-collagen cross-linking process using an ethanol/water co-solvent. Acta Biomater 6:403–408

    Article  CAS  Google Scholar 

  • Nazarov R, Jin HJ, Kaplan DL (2004) Porous 3D scaffolds from regenerated silk fibroin. Biomacromolecules 5:718–726

    Article  CAS  Google Scholar 

  • Panyam J, Labhasetwar V (2002) Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev 55:329–347

    Article  Google Scholar 

  • Pyo D (2009) Two different shapes of insulin microparticles produced by solution enhanced dispersion supercritical fluid (SEDS) process. Bull Korean Chem Soc 30:1215–1277

    Article  CAS  Google Scholar 

  • Rodrigues M, Peirico N, Matos H, Azevedo EG, Lobato MR, Almeida AJ (2004) Microcomposites theophylline/hydrogenated palm oil from a PGSS process for controlled drug delivery systems. J Supercrit Fluids 29:175–184

    Article  CAS  Google Scholar 

  • Rohanizadeh R, Kokabi N (2009) Heat denatured/aggregated albumin-based biomaterial: effects of preparation parameters on biodegradability and mechanical properties. J Mater Sci Mater Med 20:2413–2418

    Article  CAS  Google Scholar 

  • Schafer V, von Briesen H, Andreesen R, Steffan AM, Royer C, Troster S, Kreuter J, Rubsamen-Waigmann H (1992) Phagocytosis of nanoparticles by human immunodeficiency virus (HIV) infected macrophages: a possibility for antiviral drug targeting. Pharm Res 9:541–546

    Article  CAS  Google Scholar 

  • Shao Z, Vollrath F (2002) Surprising strength of silkworm silk. Nature 418:741

    Article  CAS  Google Scholar 

  • Sundar S, Kundu J, Kundu SC (2010) Biopolymeric nanoparticles. Sci Technol Adv Mater 11:014104–014116

    Article  Google Scholar 

  • Suo QL, He WZ, Huang YC, Li CP, Hong HL, Li YX, Zhu MD (2005) Micronization of the natural pigment-bixin by the SEDS process through prefilming atomization. Powder Technol 154:110–115

    Article  CAS  Google Scholar 

  • Tan H, Chu CR, Payne KA, Marra KG (2009) Injectable in situ forming biodegradable chitosan-hyaluronic acid based hydrogels for cartilage tissue engineering. Biomaterials 30:2499–2506

    Article  CAS  Google Scholar 

  • Vlugt-Wensink KD, de Vrueh R, Gresnigt MG, Hoogerbrugge CM, van Buul-Offers SC, de Leede LG, Sterkman LG, Crommelin DJ, Hennink WE, Verrijk R (2007) Preclinical and clinical in vitro in vivo correlation of an hGH dextran microsphere formulation. Pharm Res 24:2239–2248

    Article  CAS  Google Scholar 

  • Wenk E, Wandrey AJ, Merkle HP, Meinel L (2008) Silk fibroin spheres as a platform for controlled drug delivery. J Control Release 132:26–34

    Article  CAS  Google Scholar 

  • Yan HB, Zhang YQ, Ma YL, Zhou LX (2009) Biosynthesis of insulin-silk fibroin nanoparticles conjugates and in vitro evaluation of a drug delivery. J Nanopart Res 11:1937–1946

    Article  CAS  Google Scholar 

  • Yang L, Kuang J, Wang J, Li Z, Zhang LM (2008) Loading and in vitro controlled release of indomethacin using amphiphilic cholesteryl-bearing carboxymethylcellulose derivatives. Macromol Biosci 8:279–286

    Article  Google Scholar 

  • Yeo SD, Kiran E (2005) Formation of polymer particles with supercritical fluids: a review. J Supercrit Fluids 34:287–308

    Article  CAS  Google Scholar 

  • Zhang JX, Yan MQ, Li XH, Qiu LY, Li XD, Li XJ, Jin Y, Zhu KJ (2007a) Local delivery of indomethacin to arthritis-bearing rats through polymeric micelles based on amphiphilic polyphosphazenes. Pharm Res 24:1944–1953

    Article  CAS  Google Scholar 

  • Zhang YQ, Shen WD, Xiang RL, Zhuge LJ, Gao WJ, Wang WB (2007b) Formation of silk fibroin nanoparticles in water-miscible organic solvent and their characterization. J Nanopart Res 9:885–900

    Article  CAS  Google Scholar 

  • Zhang F, Zuo B, Bai L (2009a) Study on the structure of SF fiber mats electrospun with HFIP and FA and cells behavior. J Mater Sci 44:5682–5687

    Article  CAS  Google Scholar 

  • Zhang XD, Guo ML, Wu HY, Sun YM, Ding YQ, Feng X, Zhang LA (2009b) Irradiation stability and cytotoxicity of gold nanoparticles for radiotherapy. Int J Nanomed 4:165–173

    Article  CAS  Google Scholar 

  • Zhang Y, Tang L, Sun L, Bao J, Song C, Huang L, Liu K, Tian Y, Tian G, Li Z, Sun H, Mei L (2010) A novel paclitaxel-loaded poly(epsilon-caprolactone)/Poloxamer 188 blend nanoparticle overcoming multidrug resistance for cancer treatment. Acta Biomater 6:2045–2052

    Article  CAS  Google Scholar 

  • Zhao XH, Zu YG, Li QY, Wang MX, Zu BS, Zhang XN, Jiang R, Zu CL (2010) Preparation and characterization of camptothecin powder micronized by a supercritical antisolvent (SAS) process. J Supercrit Fluids 51:412–419

    Article  CAS  Google Scholar 

  • Zhou CZ, Confalonieri F, Medina N, Zivanovic Y, Esnault C, Yang T, Jacquet M, Janin J, Duguet M, Perasso R, Li ZG (2000) Fine organization of Bombyx mori fibroin heavy chain gene. Nucleic Acids Res 28:2413–2419

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Hong Kong Innovation and Technology Commission and Hong Kong Research Institute of Textile and Apparel for providing funding support to this research through projects ITP/001/07TP, ITP/031/08TP, the Hong Kong Research Grant Council and the Hong Kong Polytechnic University through projects PolyU5242/09E, G-YX1M, J-BB6Q and GU942. Also, we would like to thank the support of Guangdong Provincial Department of Science and Technology through the Guangdong-Hong Kong International Textile Bioengineering Joint Research Center with project code 2011B050300023, as well as the sponsorship from Hong Kong Jockey Club Sports Medicine and Health Science Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, Z., Chen, A., Li, Y. et al. Fabrication of silk fibroin nanoparticles for controlled drug delivery. J Nanopart Res 14, 736 (2012). https://doi.org/10.1007/s11051-012-0736-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-0736-5

Keywords

Navigation