Skip to main content
Log in

Electrical bistability and charge-transport mechanisms in cuprous sulfide nanosphere-poly(N-vinylcarbazole) composite films

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In this study, electrically bistable devices were fabricated by incorporating cuprous sulfide (Cu2S) nanospheres with mean size less than 10 nm into a poly(N-vinylcarbazole) (PVK) matrix. A remarkable electrical bistability was clearly observed in the current–voltage curves of the devices due to an electric-field-induced charge transfer between the dodecanethiol-capped Cu2S nanospheres and PVK. The maximum ON/OFF current ratio reached up to value as large as 104, which was dependent on the mass ratios of Cu2S nanospheres to PVK, the amplitude of the scanning voltages, and the film thickness. The charge-transport mechanisms of the electrically bistable devices were described on the basis of the experimental results using different theoretical models of organic electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Carter SA, Angelopoulos M, Karg S, Brock PJ, Scott JC (1997) Polymeric anodes for improved polymer light-emitting diode performance. Appl Phys Lett 70:2067–2069

    Article  CAS  Google Scholar 

  • Chen JS, Xu LL, Lin J, Geng YH, Wang LX, Ma DG (2006) Negative differential resistance and multilevel memory effects in organic devices. Semicond Sci Technol 21:1121–1124

    Article  CAS  Google Scholar 

  • Chen L, Xia YD, Liang XF, Yin KB, Yin J, Liu ZG, Chen Y (2007) Nonvolatile memory devices with Cu2S and Cu-Pc bilayered films. Appl Phys Lett 91:073511-1–073511-3

    Google Scholar 

  • Das BC, Pal AJ (2008) Core-shell hybrid nanoparticles with functionalized quantum dots and ionic dyes: growth, monolayer formation, and electrical bistability. ACS Nano 2:1930–1938

    Article  CAS  Google Scholar 

  • Ghosh B, Pal AJ (2009) Conductance switching in TiO2 nanorods is a redox-driven process: evidence from photovoltaic parameters. J Phys Chem C 113:18391–18395

    Article  CAS  Google Scholar 

  • Ham JH, Oh DH, Cho SH, Jung JH, Kim TW, Ryu ED, Kim SW (2009) Carrier transport mechanisms of nonvolatile write-once-read-many times memory devices with InP-ZnS core-shell nanoparticles embedded in a polymethyl methacrylate layer. Appl Phys Lett 94:112101-1–112101-3

    Google Scholar 

  • Huang JM, Yang Y, Liu SY, Shen JC (1996) Preparation and characterization of Cu2S/CdS/ZnS nanocomposite in polymeric networks. Polym Bull 37:679–682

    Article  CAS  Google Scholar 

  • Li FS, Cho SH, Son DI, Park KH, Kim TW (2008) Multilevel nonvolatile memory effects in hybrid devices containing CdSe/ZnS nanoparticle double arrays embedded in the C60 matrices. Appl Phys Lett 92:102110-1–102110-3

    Google Scholar 

  • Li FS, Son DI, Cho SH, Kim TW (2009) Electrical bistabilities and operating mechanisms of memory devices fabricated utilizing ZnO quantum dot–multi-walled carbon nanotube nanocomposites. Nanotechnology 20:185202-1–185202-4

    Google Scholar 

  • Lin J, Ma DG (2008) Origin of negative differential resistance and memory characteristics in organic devices based on tris-(8-hydroxyquinoline) aluminum. J Appl Phys 103:124505-1–124505-4

    Google Scholar 

  • Liu G, Ling QD, Teo EYH, Zhu CX, Chan DSH, Neoh KG, Kang ET (2009) Electrical conductance tuning and bistable switching in poly(N-vinylcarbazole)-carbon nanotube composite films. ACS Nano 3:1929–1937

    Article  CAS  Google Scholar 

  • Liu JQ, Lin ZQ, Liu TJ, Yin ZY, Zhou XZ, Chen SF, Xie LH, Boey F, Zhang H, Huang W (2010a) Multilayer stacked low-temperature-reduced graphene oxide films: preparation, characterization, and application in polymer memory devices. Small 6:1536–1542

    Article  CAS  Google Scholar 

  • Liu JQ, Yin ZY, Cao XH, Zhao F, Lin AP, Xie LH, Fan QL, Boey F, Zhang H, Huang W (2010b) Bulk heterojunction polymer memory devices with reduced graphene oxide as electrodes. ACS Nano 4:3987–3992

    Article  CAS  Google Scholar 

  • Ma LP, Liu J, Yang Y (2002) Organic electrical bistable devices and rewritable memory cells. Appl Phys Lett 80:2997–2999

    Article  CAS  Google Scholar 

  • Ouyang JY, Chu CW, Szmanda C, Ma LP, Yang Y (2004) Programmable polymer thin film and nonvolatile memory device. Nat Mater 3:918–922

    Article  CAS  Google Scholar 

  • Pradhan B, Batabyal SK, Pal AJ (2006) Electrical bistability and memory phenomenon in carbon nanotube-conjugated polymer matrixes. J Phys Chem B 110:8274–8277

    Article  CAS  Google Scholar 

  • Pradhan B, Majee SK, Batabyal SK, Pal AJ (2007) Electrical bistability in zinc oxide nanoparticle- polymer composites. J Nanosci Nanotechno 7:4534–4539

    Article  CAS  Google Scholar 

  • Shim JH, Jung JH, Lee MH, Kim TW, Son DI, Han AN, Kim SW (2011) Memory mechanisms of nonvolatile organic bistable devices based on colloidal CuInS2/ZnS core-shell quantum dot- Poly(N-vinylcarbazole) nanocomposites. Org Electron 12:1566–1570

    Article  CAS  Google Scholar 

  • Son DI, Kim TW, Shim JH, Jung JH, Lee DU, Lee JM, Park WIl, Choi WK (2010a) Flexible organic bistable devices based on graphene embedded in an insulating Poly(methyl methacrylate) polymer layer. Nano Lett 10:2441–2447

    Article  CAS  Google Scholar 

  • Son DI, Park DH, Choi WK, Cho SH, Kim W-T, Kim TW (2009) Carrier transport in flexible organic bistable devices of ZnO nanoparticles embedded in an insulating poly(methyl methacrylate) polymer layer. Nanotechnology 20:195203-1–195203-6

    Google Scholar 

  • Son DI, You CH, Jung JH, Kim TW (2010b) Carrier transport mechanisms of organic bistable devices fabricated utilizing on colloidal ZnO quantum dot-polymethylmethacrylate polymer nanocomposites. Appl Phys Lett 97:013304-1–013304-3

    Google Scholar 

  • Tang AW, Teng F, Qian L, Hou YB, Wang YS (2009) Electrical bistability of copper (I) sulfide nanocrystals blending with a semiconducting polymer. Appl Phys Lett 95:143115-1–143115-3

    Google Scholar 

  • Tang AW, Qu SC, Hou YB, Teng F, Tan HR, Liu J, Zhang XW, Wang YS, Wang ZG (2010a) Electrical bistability and negative differential resistance in diodes based on silver nanoparticle- poly(N-vinylcarbazole) composites. J Appl Phys 108:094320-1–094320-5

    Google Scholar 

  • Tang AW, Qu SC, Li K, Hou YB, Teng F, Cao J, Wang YS, Wang ZG (2010b) One-pot synthesis and self-assembly of colloidal copper(I) sulfide nanocrystals. Nanotechnology 21:285602-1–285602-9

    Google Scholar 

  • Tang AW, Teng F, Hou YB, Wang YS, Tan FR, Qu SC, Wang ZG (2010c) Optical properties and electrical bistability of CdS nanoparticles synthesized in dodecanethiol. Appl Phys Lett 96:163112-1–163112-3

    Google Scholar 

  • Yang Y, Ouyang J, Ma LP, Tseng RJH, Chu CW (2006) Electrical switching and bistability in organic/polymeric thin films and memory devices. Adv Funct Mater 16:1001–1014

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was partly supported by the NSFC Projects (Nos. 61108063, 61077022), and the Natural Science Foundation for Distinguished Young Scholars of China (Nos. 61125505, 60825407), and the Fundamental Research Fund for Beijing JiaoTong University (2010JBZ006, 2011JBM301). One of the authors (A.W.) is also grateful to China Postdoctoral Science Foundation (201003148).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aiwei Tang or Feng Teng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, A., Teng, F., Liu, J. et al. Electrical bistability and charge-transport mechanisms in cuprous sulfide nanosphere-poly(N-vinylcarbazole) composite films. J Nanopart Res 13, 7263–7269 (2011). https://doi.org/10.1007/s11051-011-0640-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-011-0640-4

Keywords

Navigation