Skip to main content
Log in

Harvesting silica nanoparticles from rice husks

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Biogenic silica nanoparticles were synthesized using rice husks (RHs) as the raw material via controlled pyrolysis. The characterization results showed that the morphology of the synthesized silica was highly related to the pretreatment of RHs and the pyrolysis conditions. Particularly, potassium cations in RHs were found to catalyze the melting of silica, during which the amorphous silica were converted to crystalline phase. Two hours of pyrolysis at 700 °C appeared to be ideal to synthesize silica nanoparticles with a diameter of ca. 20–30 nm. Higher temperature and longer duration of pyrolysis led to undesired melting of silica nanoparticles, while too low a temperature cannot effectively remove carbonous residues. Such amorphous silica nanoparticles with narrow size distribution and high purity are expected to replace silica gel and fumed silica for various applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Amick JA (1982) Purification of rice hulls as a source of solar grade silicon for solar cells. J Electrochem Soc 129(4):864–866

    Article  CAS  Google Scholar 

  • Asuncion MJ, Hasegawa I, Kampf JW, Laine RM (2005) The selective dissolution of rice hull ash to form [OSiO1.5]8[R4N]8 (R = Me, CH2CH2OH) octasilicates. Basic nanobuilding blocks and possible models of intermediates formed during biosilicification processes. J Mater Chem 15:2114

    Google Scholar 

  • Bansal V, Ahmad A, Sastry M (2006) Fungus-mediated biotransformation of amorphous silica in rice husk to nanocrystalline silica. J Am Chem Soc 128(43):14059–14066. doi:10.1021/ja062113+

    Article  CAS  Google Scholar 

  • Bassett DR, Boucher EA, Zettlemoyer AC (1972) The effect of alkali halides and silver nitrate on the crystallization of silica powders. J Mater Sci 7(12):1379–1382. doi:10.1007/bf00574929

    Article  CAS  Google Scholar 

  • Conradt R, Pimkhaokham P, Leela-Adisorn U (1992) Nano-structured silica from rice husk. J Non-Cryst Solids 145:75–79

    Article  CAS  Google Scholar 

  • De G, Kundu D, Karmakar B, Ganguli D (1993) FTIR studies of gel to glass conversion in TEOS-fumed silica-derived gels. J Non-Cryst Solids 155(3):253–258

    Article  CAS  Google Scholar 

  • Derry LA, Kurtz AC, Ziegler K, Chadwick OA (2005) Biological control of terrestrial silica cycling and export fluxes to watersheds. Nature 433:728–731

    Google Scholar 

  • Ding TP, Ma GR, Shui MX, Wan DF, Li RH (2005) Silicon isotope study on rice plants from the Zhejiang province, China. Chem Geol 218(1–2):41–50

    Article  CAS  Google Scholar 

  • FAO Statistics on rice production (2008) Food and Agriculture Organization (FAO) of the United Nations. Available at http://www.fao.org

  • Glasser FP (1986) Silica. In: Beaver MB (ed) Encyclopedia of materials science and engineering, vol 6. The MIT Press, Cambridge, pp 4393–4401

    Google Scholar 

  • Gurav JL, Jung I-K, Park H-H, Kang ES, Nadargi DY (2010) Silica aerogel: synthesis and applications. J Nanomater 2010:1–11

    Article  Google Scholar 

  • Halas NJ (2008) Nanoscience under glass: the versatile chemistry of silica nanostructures. ACS Nano 2(2):179–183. doi:10.1021/nn800052e

    Article  CAS  Google Scholar 

  • Haynes WM (2010) CRC handbook of chemistry and physics, 91st edn. CRC Press, Boco Raton

    Google Scholar 

  • Huffman GP, Shah N, Zhao JM, Huggins FE, Hoost TE, Halvorsen S, Goodwin JG (1995) In situ XAFS investigation of K-promoted co catalysts. J Catal 151(1):17–25

    Article  CAS  Google Scholar 

  • Hunt LP, Dismukes JP, Amick JA, Schei A, Larsen K (1984) Rice hulls as a raw material for producing silicon. J Electrochem Soc 131(7):1683–1686

    Article  CAS  Google Scholar 

  • Kamijo N, Umesaki N (1993) Laboratory soft X-ray XAFS: the local structure of potassium oxide-silica glasses. Jpn J Appl Phys 32:658–660

    Article  CAS  Google Scholar 

  • Kapur PC (1985) Production of reactive bio-silica from the combustion of rice husk in a tube-in-basket (TiB) burner. Powder Technol 44(1):63–67

    Article  CAS  Google Scholar 

  • Laine RM, Blohowiak KY, Robinson TR, Hoppe ML, Nardi P, Kampf J, Uhm J (1991) Synthesis of pentacoordinate silicon complexes from SiO2. Nature 353(6345):642–644

    Article  CAS  Google Scholar 

  • Liou T-H, Wu S-J (2010) Kinetics study and characteristics of silica nanoparticles produced from biomass-based material. Ind Eng Chem Res 49(18):8379–8387. doi:10.1021/ie100050t

    Article  CAS  Google Scholar 

  • Luan TC, Chou TC (1990) Recovery of silica from the gasification of rice husks/coal in the presence of a pilot flame in a modified fluidized bed. Ind Eng Chem Res 29(9):1922–1927. doi:10.1021/ie00105a026

    Article  CAS  Google Scholar 

  • Lucas Y, Luizao FJ, Chauvel A, Rouiller J, Nahon D (1993) The relation between biological activity of the rain forest and mineral composition of soils. Science 260:521–523

    Google Scholar 

  • Mann S (1993) Molecular tectonics in biomineralization and biomimetic materials chemistry. Nature 365:499–505

    Article  CAS  Google Scholar 

  • Mann S, Ozin GA (1996) Synthesis of inorganic materials with complex form. Nature 382:313–318

    Article  CAS  Google Scholar 

  • Markovska I, Lyubchev L (2007) A Study on the thermal destruction of rice husk in air and nitrogen atmosphere. J Therm Anal Calorim 89(3):809–814. doi:10.1007/s10973-007-8294-2

    Article  CAS  Google Scholar 

  • Martinez JR, Ruiz F, Vorobiev YV, Perez-Robles F, Gonzalez-Hernandez J (1998) Infrared spectroscopy analysis of the local atomic structure in silica prepared by sol–gel. J Chem Phys 109(17):7511–7514

    Article  CAS  Google Scholar 

  • Oliver S, Kuperman A, Coombs N, Lough A, Ozin GA (1995) Lamellar aluminophosphates with surface patterns that mimic diatom and radiolarian microskeletons. Nature 378:47–50

    Article  CAS  Google Scholar 

  • Pajonk GM (2003) Some applications of silica aerogels. Colloid Polym Sci 281(7):637–651

    Article  CAS  Google Scholar 

  • Patel M, Karera A, Prasanna P (1987) Effect of thermal and chemical treatments on carbon and silica contents in rice husk. J Mater Sci 22(7):2457–2464. doi:10.1007/bf01082130

    Article  CAS  Google Scholar 

  • Pol VG, Gedanken A, Calderon-Moreno J (2003) Deposition of gold nanoparticles on silica spheres: a sonochemical approach. Chem Mater 15(5):1111–1118. doi:10.1021/cm021013+

    Article  CAS  Google Scholar 

  • Real C, Alcalá MD, Criado JM (1996) Preparation of silica from rice husks. J Am Ceram Soc 79(8):2012–2016. doi:10.1111/j.1151-2916.1996.tb08931.x

    Article  CAS  Google Scholar 

  • Real C, Alcalá MD, Muñoz-Páez A, Criado JM (1997) XAFS analysis of the potasium-silica interaction in rice husks. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 133(1–4):68–72

    Article  CAS  Google Scholar 

  • Rohatgi K, Prasad SV, Rohatgi PK (1987) Release of silica-rich particles from rice husk by microbial fermentation. J Mater Sci Lett 6(7):829–831. doi:10.1007/bf01729027

    Article  CAS  Google Scholar 

  • Rösch L, John P, Reitmeier R (2000) Silicon compounds, organic. In: Matthias B, Jeffrey BC, Boy C (eds) Ullmann’s Encyclopedia of industrial chemistry. Wiley, Weinheim. doi:10.1002/14356007.a24_021

  • San O, Özgür C (2009) Preparation of a stabilized [beta]-cristobalite ceramic from diatomite. J Alloys Compd 484(1–2):920–923

    Article  CAS  Google Scholar 

  • Sapei L, Noske R, Strauch P, Paris O (2008) Isolation of mesoporous biogenic silica from the perennial plant equisetum hyemale. Chem Mater 20(5):2020–2025. doi:10.1021/cm702991f

    Article  CAS  Google Scholar 

  • Schraml-Marth M, Walther KL, Wokaun A, Handy BE, Baiker A (1992) Porous silica gels and TiO2/SiO2 mixed oxides prepared via the sol–gel process: characterization by spectroscopic techniques. J Non Cryst Solids 143:93–111

    Article  CAS  Google Scholar 

  • Slowing II, Trewyn BG, Giri S, Lin VSY (2007) Mesoporous silica nanoparticles for drug delivery and biosensing applications. Adv Funct Mater 17(8):1225–1236

    Article  CAS  Google Scholar 

  • Soleimani Dorcheh A, Abbasi MH (2008) Silica aerogel; synthesis, properties and characterization. J Mater Process Technol 199(1–3):10–26

    Article  CAS  Google Scholar 

  • Sun L, Gong K (2001) Silicon-based materials from rice husks and their applications. Ind Eng Chem Res 40(25):5861–5877

    Article  CAS  Google Scholar 

  • Teng H, Wei Y-C (1998) Thermogravimetric studies on the kinetics of rice hull pyrolysis and the influence of water treatment. Ind Eng Chem Res 37(10):3806–3811. doi:10.1021/ie980207p

    Article  CAS  Google Scholar 

  • Treguer P, Nelson DM, Van Bennkom AJ, DeMaster DJ, Leynaert A, Queguiner B (1995) The silica balance in the world ocean: a reestimate. Science 268:375-379

    Article  CAS  Google Scholar 

  • Trewyn BG, Giri S, Slowing II, Lin VSY (2007) Mesoporous silica nanoparticle based controlled release, drug delivery, and biosensor systems. Chem Commun (31):3236–3245

  • Uhrlandt S (2006) Silica. In: Seidel A (ed) Kirk-Othmer encyclopedia of chemical technology, vol 22, 5th edn. Wiley, Hoboken, pp 365–379. doi:10.1002/0471238961.0914201816012020.a01.pub2

    Google Scholar 

  • Umeda J, Kondoh K, Michiura Y (2007) Process parameters optimization in preparing high-purity amorphous silica originated from rice husks. Mater Trans 48(12):3095–3100. doi:10.2320/matertrans.MK200715

    Article  CAS  Google Scholar 

  • Vivero-Escoto JL, Trewyn BG, Lin VSY (2010) Mesoporous silica nanoparticles: synthesis and applications. Annu Rev Nano Res 3:191–231

    CAS  Google Scholar 

  • Wu XC (1996) Studies on the hydrothermal conditions of the extraction of high-purity silica from rice husks. Bull Chin Ceram Soc 15(4):36–38

    Google Scholar 

  • Zhang HX, Zhao X, Ding XF, Lei H, Chen X, An DM, Li YL, Wang ZC (2010) A study on the consecutive preparation of d-xylose and pure superfine silica from rice husk. Bioresour Technol 101(4):1263–1267. doi:10.1016/j.biortech.2009.09.045

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was sponsored by the US Environmental Protection Agency’s P3 Award (SU-83508401). W.W. thanks the support by the Fundamental Research Funds for the Central Universities (No: 2011ZM0046), and the National Natural Science Foundation of China (Grant No. 21176093). L.S. would like to thank the start-up fund and the Research Enhancement Grant from Texas State University-San Marcos, the Welch Foundation, and the US Department of Agriculture for partial support for this research. We would like to thank Prof. Kecheng Gong for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weixing Wang or Luyi Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, W., Martin, J.C., Zhang, N. et al. Harvesting silica nanoparticles from rice husks. J Nanopart Res 13, 6981–6990 (2011). https://doi.org/10.1007/s11051-011-0609-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-011-0609-3

Keywords

Navigation