Skip to main content
Log in

Encapsulation of iron nanoparticles in alginate biopolymer for trichloroethylene remediation

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Nanoscale zero-valent iron (NZVI) particles (10–90 nm) were encapsulated in biodegradable calcium-alginate capsules for the first time for application in environmental remediation. Encapsulation is expected to offers distinct advances over entrapment. Trichloroethylene (TCE) degradation was 89–91% in 2 h, and the reaction followed pseudo first order kinetics for encapsulated NZVI systems with an observed reaction rate constant (k obs) of 1.92–3.23 × 10−2 min−1 and a surface normalized reaction rate constant (k sa) of 1.02–1.72 × 10−3 L m−2 min−1. TCE degradation reaction rates for encapsulated and bare NZVI were similar indicating no adverse affects of encapsulation on degradation kinetics. The shelf-life of encapsulated NZVI was found to be four months with little decrease in TCE removal efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aksu Z, E-retli G, Kutsal T (2002) A comparative study of copper(II) biosorption on Ca-alginate, agarose and immobilized C. vulgaris in a packed-bed column. Process Biochem 33:393–400

    Article  Google Scholar 

  • Alowitz MJ, Scherer MM (2002) Kinetics of nitrate, nitrite, and Cr(VI) reduction by iron metal. Environ Sci Technol 36:299–306

    Article  CAS  Google Scholar 

  • APHA, AWWA, WEF (2005) Standard methods for the examination of water and wastewater, 21st edn. American Public Health Association, Washington

    Google Scholar 

  • Augst AD, Kong HJ, Mooney D (2006) Alginate hydrogels as biomaterials. Macromol Biosci 6:623–633

    Article  CAS  Google Scholar 

  • Bayramoğlu G, Arica Y (2009) Construction a hybrid biosorbent using Scenedesmus quadricauda and Ca-alginate for biosorption of Cu(II), Zn(II) and Ni(II): kinetics and equilibrium studies. Bioresour Technol 100:186–193

    Article  Google Scholar 

  • Bezbaruah AN, Krajangpan S, Chisholm BJ, Khan E, Bermudez JJ (2009a) Entrapment of iron nanoparticles in calcium alginate beads for groundwater remediation applications. J Hazard Mater 166:1339–1343

    Article  CAS  Google Scholar 

  • Bezbaruah AN, Thompson JM, Chisholm BJ (2009b) Remediation of alachlor and atrazine contaminated water with zero-valent iron nanoparticles. J Environ Sci Health Part B Pestic Food Contam Agric Wastes 44:518–524

    CAS  Google Scholar 

  • Bleve G, Lezzi C, Chiriatti MA, D’Ostuni I, Tristezza M, Di Venere D, Sergio L, Mita G, Grieco F (2011) Selection of non-conventional yeasts and their use in immobilized form for the bioremediation of olive oil mill wastewater. Bioresour Technol 102:982–989

    Article  CAS  Google Scholar 

  • Chan ES, Yim ZH, Phan SH, Mansa RF, Ravindra P (2010) Encapsulation of herbal aqueous extract through absorption with Ca-alginate hydrogel beads. Food Bioprod Process 88:195–201

    Article  CAS  Google Scholar 

  • Garbayo I, Leon R, Vigara J, Vılchez C (2002) Diffusion characteristics of nitrate and glycerol in alginate. Colloid Surf B 25:1–9

    Article  CAS  Google Scholar 

  • Gregory KB, Larese-Casanova P, Parkin GF, Scherer MM (2004) Abiotic transformation of hexahydro-1,3,5-trinitro-1,3,5-triazine by FeII bound to magnetite. Environ Sci Technol 38:1408–1414

    Article  CAS  Google Scholar 

  • He F, Zhao DY, Paul C (2010) Field assessment of carboxymethyl cellulose stabilized iron nanoparticles for in situ destruction of chlorinated solvents in source zones. Water Res 44:2360–2370

    Article  CAS  Google Scholar 

  • Hill CB, Khan E (2008) A comparative study of immobilized nitrifying and co immobilized nitrifying and denitrifying bacteria for ammonia removal from sludge digester supernatant. Water Air Soil Pollut 195:23–33

    Article  CAS  Google Scholar 

  • Huang GL, Zhihui S (2002) Immobilization of Spirulina subsalsa for removal of triphenyltin from water. Artif Cells Blood Substit Immobil Biotechnol 30:293–305

    Article  Google Scholar 

  • Johnson TL, Scherer MM, Tratnyek PG (1996) Kinetics of halogenated organic compound degradation by iron metal. Environ Sci Technol 30:2634–2640

    Article  CAS  Google Scholar 

  • Joo SH, Zhao D (2008) Destruction of lindane and atrazine using stabilized iron nanoparticles under aerobic and anaerobic conditions: effects of catalyst and stabilizer. Chemosphere 70:418–425

    Article  CAS  Google Scholar 

  • Kim H, Hong HJ, Jung J, Kim SH, Yang JW (2010) Degradation of trichloroethylene (TCE) by nanoscale zero-valent iron (nZVI) immobilized in alginate bead. J Hazard Mater 176:1038–1043

    Article  CAS  Google Scholar 

  • Lai YL, Annadurai G, Huang FC, Lee JF (2008) Biosorption of Zn(II) on the different Ca-alginate beads from aqueous solution. Bioresour Technol 99:6480–6487

    Article  CAS  Google Scholar 

  • Lin YB, Fugetsu B, Terui N, Tanaka S (2005) Removal of organic compounds by alginate gel beads with entrapped activated carbon. J Hazard Mater 120:237–241

    Article  CAS  Google Scholar 

  • Liu YQ, Lowry GV (2006) Effect of particle age (Fe0 content) and solution pH on NZVI reactivity: H2 evolution and TCE dechlorination. Environ Sci Technol 40:6085–6090

    Article  CAS  Google Scholar 

  • Liu Y, Majetich SA, Tilton RD, Sholl DS, Lowry GV (2005) TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. Environ Sci Technol 39:1338–1345

    Article  CAS  Google Scholar 

  • Lu Y, Xu S, Jiang Z, Yuan W, Wang T (2005) Diffusion of nicotinamide adenine dinucleotide in calcium alginate hydrogel beads doped with carbon and silica nanotubes. J Chem Eng Data 50:1319–1323

    Article  CAS  Google Scholar 

  • Matheson LJ, Tratnyek PG (1994) Reductive dehalogenation of chlorinated methanes by iron metal. Environ Sci Technol 28:2045–2053

    Article  CAS  Google Scholar 

  • Önal S, Baysal SH, Ozdemir G (2007) Studies on the applicability of alginate entrapped Chryseomonas luteola TEM 05 for heavy metal biosorption. J Hazard Mater 146:417–420

    Article  Google Scholar 

  • Phenrat T, Liu Y, Tilton RD, Lowry GV (2009a) Adsorbed polyelectrolyte coatings decrease Fe0 nanoparticle reactivity with TCE in water conceptual model and mechanisms. Environ Sci Technol 43:1507–1514

    Article  CAS  Google Scholar 

  • Phenrat T, Long TC, Lowry GV, Veronsei B (2009b) Partial oxidation (“aging”) and surface modification decrease the toxicity of nanosized zerovalent iron. Environ Sci Technol 43:195–200

    Article  CAS  Google Scholar 

  • Pramanik S, McEvoy J, Siripattanakul S, Khan E (2011) Effects of entrapment on nucleic acid content and microbial diversity of mixed cultures in biological wastewater treatment. Bioresour Technol 102:3176–3183

    Article  CAS  Google Scholar 

  • Schrick B, Blough JL, Jones AD, Mallouk TE (2002) Hydrodechlorination of trichloroethylene to hydrocarbons using bimetallic nickel-iron nanoparticles. Chem Mater 14:5140–5147

    Article  CAS  Google Scholar 

  • Srimornsak P, Sungthongjeen S (2007) Modification of theophylline release with alginate gel formed in hard capsules. Pharm Sci Tech 8:1–8

    Article  Google Scholar 

  • Tanriseven A, Doan S (2001) Immobilization of invertase within calcium alginate gel capsules. Process Biochem 36:1081–1083

    Article  CAS  Google Scholar 

  • Thompson JM, Chisholm BJ, Bezbaruah AN (2010) Reductive dechlorination of chloroacetanilide herbicide (alachlor) using zero-valent iron nanoparticles. Environ Eng Sci 27:227–232

    Article  CAS  Google Scholar 

  • USEPA (1992) Measurement of purgable organic compounds in water by capillary column gas chromatography/mass spectrometry, Method 524.2. Environmental Monitoring Systems Laboratory, Office of Research and Development, United Stated Environmental Protection Agency, Ohio

  • Wang CB, Zhang WX (1997) Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ Sci Technol 31:2154–2156

    Article  CAS  Google Scholar 

  • Wang W, Zhou M, Jin Z, Li T (2010) Reactivity characteristics of poly (methyl methacrylate) coated nanoscale iron particles for trichloroethylene remediation. J Hazard Mater 173:724–730

    Article  CAS  Google Scholar 

  • Wang J, Jin Y, Liu J, Ju X, Meng T, Chu L (2011) Novel calcium-alginate capsules with aqueous core and thermo-responsive membrane. J Colloid Interface Sci 353:61–68

    Article  CAS  Google Scholar 

  • Westrin BA, Axelsson A (1991) Diffusion in gels containing immobilized cells: a critical review. Biotechnol Bioeng 38:439–446

    Article  CAS  Google Scholar 

  • Zhang WX (2003) Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res 5:323–332

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by USGS/North Dakota Water Resources Research Institute (NDWRRI). The help from the members (especially Mr. Harjyoti Kalita and Ms. Sita Krajangpan) of Nanoenvirology Research Group (NRG) and Environmental Engineering Laboratory of North Dakota State University is thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Achintya N. Bezbaruah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bezbaruah, A.N., Shanbhogue, S.S., Simsek, S. et al. Encapsulation of iron nanoparticles in alginate biopolymer for trichloroethylene remediation. J Nanopart Res 13, 6673–6681 (2011). https://doi.org/10.1007/s11051-011-0574-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-011-0574-x

Keywords

Navigation