Skip to main content
Log in

Direct production of carbon nanotubes decorated with Cu2O by thermal chemical vapor deposition on Ni catalyst electroplated on a copper substrate

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Carbon nanotubes (CNTs) decorated with Cu2O particles were grown on a Ni catalyst layer deposited on a Cu substrate by thermal chemical vapor deposition from liquid petroleum gas. Ni catalyst nanoparticles with different sizes were produced in an electroplating system at 45 °C using the corrosive effect of H2SO4 which was added to solution. These nanoparticles provide the nucleation sites for CNT growth avoiding the need for a buffer layer. The surface morphology of the Ni catalyst films and CNT growth over this catalyst was studied by scanning electron microscopy (SEM). High temperature surface segregation of the Cu substrate into the Ni catalyst layer and its exposition to O2 at atmospheric environment, during the CNTs growth, lead to the production of CNTs decorated with about 6 nm Cu2O nanoparticles. We used SEM to study the surface characteristics of Ni catalyst films and characteristic of grown CNTs. Raman spectroscopy, transmission electron microscopy (TEM), electron diffraction (EDX), X-ray diffraction, and X-ray photoelectron spectroscopy (XPS) revealed the formation of CNTs. The selected area electron diffraction pattern, EDX, and XPS studies show that these CNTs were decorated with Cu2O nanoparticles. This way of fabrication is the easiest and lowest cost method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akbarzadeh Pasha M, Shafiekhani A, Vesaghi MA (2009) Hot filament CVD of Fe–Cr catalyst for thermal CVD carbon nanotube growth from liquid petroleum gas. Appl Surf Sci 256(5):1365–1371. doi:10.1016/j.apsusc.2009.08.090

    Article  Google Scholar 

  • Belin T, Epron F (2005) Characterization methods of carbon nanotubes: a review. Mater Sci Eng B 119(2):105–118. doi:10.1016/j.mseb.2005.02.046

    Article  Google Scholar 

  • Cao A, Xu C, Liang J, Wu D, Wei B (2001) X-ray diffraction characterization on the alignment degree of carbon nanotubes. Chem Phys Lett 344(1–2):13–17

    Article  CAS  Google Scholar 

  • Domnick R, Held G, Koschel H, Ammon Ch, Steinruck H–P (2001) Segregation effects and chemical properties of nickel monolayers on Cu (111). Surf Sci 482–485:1292–1297

    Article  Google Scholar 

  • Dubosc M, Casimirius S, Besland MP, Cardinaud C, Granier A, Duvail JL et al (2007) Impact of the Cu-based substrates and catalyst deposition techniques on carbon nanotube growth at low temperature by PECVD. Micro Eng 84(11):2501–2505. doi:10.1016/j.mee.2007.05.024

    Article  CAS  Google Scholar 

  • Erdelyi Z, Girardeaux Ch, Tokei Zs, Beke DL, Cserhati Cs, Rolland A (2002) Investigation of the interplay of nickel dissolution and copper segregation in Ni/Cu(111) system. Surf Sci 496:129–140

    Article  CAS  Google Scholar 

  • Gan B, Ahn J, Zhang Q, Yoon SF, Rusli, Huang QF, Yang H et al (2000) Branching carbon nanotubes deposited in HFCVD system. Diamond Relat Mater 9(3–6):897–900

    Article  CAS  Google Scholar 

  • Ghodsellahi T, Vesaghi MA, Shafiekhani A (2009) Study of surface Plasmon resonance of Cu@Cu2O core-shell nanoparticles by Mie theory. J Phys D: Appl Phys 42(1):015308 (6 pp). doi:10.1088/0022-3727/42/1/015308

    Google Scholar 

  • Girardeaux CH, Tôkei ZS, Clugnet G, Rolland A (2000) First stages in the formation of ultra thin nickel layers on Cu(111) and Ge(111) and dissolution: an AES comparative study. Appl Surf Sci 162–163:208–212

    Article  Google Scholar 

  • Hu G, Meng X, Feng X, Ding Y, Zhang S, Yang M (2007) Anatase TiO2 nanoparticles/carbon nanotubes nanofibers: preparation, characterization and photocatalytic properties. J Mater Sci 42(17):7162–7170. doi:10.1007/s10853-007-1609-7

    Article  CAS  Google Scholar 

  • Jong WJ, Lai SH, Hong KH, Lin HN, Shih HC (2002) The effect of catalysis on the formation of one-dimensional carbon structured materials. Diamond Relat Mater 11(3–6):1019–1025

    Article  CAS  Google Scholar 

  • Lahiri I, Seelaboyina R, Hwang JY, Banerjee R, Choi W (2010) Enhanced field emission from multi-walled carbon nanotubes grown on pure copper substrate. Carbon 48(5):1531–1538. doi:10.1016/j.carbon.2009.11.064

    Article  CAS  Google Scholar 

  • Li Y, Jiang H, Pang L, Wang B, Liang X (2007) Novel application of nanocrystalline nickel electrodeposit: making good diamond tools easily, efficiently and economically. Surf Coat Technol 201(12):5925–5930. doi:10.1016/j.surfcoat.2006.10.047

    Article  CAS  Google Scholar 

  • Li P, Liu J, Nag N, Crozier PA (2009a) In situ preparation of Ni–Cu/TiO2 bimetallic catalysts. J Catal 262:73–82. doi:10.1016/j.jcat.2008.12.001

    Article  CAS  Google Scholar 

  • Li X, Zhu Q, Tong S, Wang W, Song W (2009b) Self-assembled microstructure of carbon nanotubes for enzymeless glucose sensor. Sens Actuators B 136(2):444–450. doi:10.1016/j.snb.2008.10.051

    Article  Google Scholar 

  • Lin CK, Yang TJ, Feng YC, Tsung TT, Su CY (2006) Characterization of electrophoretically deposited nanocrystalline titanium dioxide films. Surf Coat Technol 200(10):3184–3189. doi:10.1016/j.surfcoat.2005.07.040

    Article  CAS  Google Scholar 

  • Lu C-Y, Tseng H-H, Wey M-Y, Hsueh T-W (2009) The comparison between the polyol process and the impregnation method for the preparation of CNT-supported nanoscale Cu catalyst. Chem Eng J 145(3):461–467. doi:10.1016/j.cej.2008.04.033

    Article  CAS  Google Scholar 

  • Martínez-Ruiz A, Alonso-Nuňez G (2007) New synthesis of Cu2O and Cu nanoparticles on multi-wall carbon nanotubes. Mater Res Bull 43(6):1492–1496. doi:10.1016/j.matterresbull.2007.06.026

    Article  Google Scholar 

  • Martis P, Fonseca A, Mekhalif Z, Delhalle J (2010) Optimization of cuprous oxide nanocrystals deposition on multiwalled carbon nanotubes. J Nanopart Res 12(2):439–448. doi:10.1007/s11051-009-9652-8

    Article  CAS  Google Scholar 

  • Mendoza E, Henley SJ, Poa CHP, Chen GY, Giusca CE, Adikaari AADT et al (2005) Large area growth of carbon nanotube arrays for sensing platforms. Sens Actuators B 109(1):75–80. doi:10.1016/j.snb.2005.03.030

    Article  Google Scholar 

  • Meunier A, Gilles B, Verdier M (2003) Interdiffusion and magnetism in Ni/Cu multilayers. Appl Surf Sci 212–213:171–176. doi:10.1016/S0169-4332(03)00397-0

    Article  Google Scholar 

  • Pauleau Y, Thie`ry F, Latrasse L, Dub SN (2004) Characteristics of copper/carbon and nickel/carbon composite films produced by microwave plasma-assisted deposition techniques from argon–methane gas mixtures. Surf Coat Technol 188–189:484–488. doi:10.1016/j.surfcoat.2004.08.059

    Article  Google Scholar 

  • Sánchez Arribas A, Bermejo E, Chicharro M, Zapardiel A, Luque GL, Ferreyra NF et al (2006) Analytical applications of a carbon nanotubes composite modified with copper microparticles as detector in flow systems. Anal Chim Acta 577(2):183–189. doi:10.1016/j.aca.2006.06.055

    Article  Google Scholar 

  • Serp P, Corrias M, Kalck P (2003) Carbon nanotubes and nanofibers in catalysis (review). Appl Catal A 253(2):337–358. doi:10.1016/S0926-860X(03)00549-0

    Article  CAS  Google Scholar 

  • Teo KBK, Singh C, Chhowalla M, Milne WI (2003) Catalytic synthesis of carbon nanotubes and nanofibers. Encycl Nanosci Nanotechnol 10:1–22

    Google Scholar 

  • Tsai TK, Chuang CC, Chao CG, Liu WL (2003) Growth and field emission of carbon nanofibers on electroless Ni-P alloy catalyst. Diamond Relat Mater 12(9):1453–1459. doi:10.1016/S0925-9635(03)00173-0

    Article  CAS  Google Scholar 

  • Tu Y, Huang ZP, Wang DZ, Wen JG, Ren ZF (2002) Growth of aligned carbon nanotubes with controlled site density. Appl Phys Lett 80:4018–4020. doi:10.1063/1.1482790

    Article  CAS  Google Scholar 

  • Wang X, Zhang F, Xia B, Zhu X, Chen J, Qiu S, Zhang P, Li J (2009) Controlled modification of multi-walled carbon nanotubes with CuO, Cu2O and Cu nanoparticles. Solid State Sci 11(3):655–659. doi:10.1016/j.solidstatesciences.2008.10.009

    Article  CAS  Google Scholar 

  • Wu H-X, Cao W-M, Li Y, Liu G, Wen Y, Yang H-F, Yang S-P (2010) In situ growth of copper nanoparticles on multiwalled carbon nanotubes and their application as non-enzymatic glucose sensor materials. Electrochim Acta 55(11):3734–3740. doi:10.1016/j.electacta.2010.02.017

    Article  CAS  Google Scholar 

  • Yin X, Wang Q, Lou Ch, Zhang X, Lei W (2008) Growth of multi-walled CNTs emitters on an oxygen-free copper substrate by chemical-vapor deposition. Appl Surf Sci 254(20):6633–6636. doi:10.1016/j.apsusc.2008.04.040

    Article  CAS  Google Scholar 

  • Yokomichi H, Sakai F, Ichihara M, Kishimoto N (2002) Carbon nanotubes synthesized by thermal chemical vapor deposition using M(NO3) n .mH2O as catalyst. Phys B 323(1–4):311–313

    Article  CAS  Google Scholar 

  • Yu Y, Ma LL, Huang WY, Li JL, Wong PK, Yu JC (2005) Coating MWNTs with Cu2O of different morphology by a polyol process. J Sol State Chem 178(5):1488–1494. doi:10.1016/j.jssc.2005.02.016

    Article  CAS  Google Scholar 

  • Zhang J, Chow GM, Lawrence SH, Feng CR (2000) Nanostructured Ni films by polyol electroless deposition. Mater Phys Mech 1(1):11–14

    CAS  Google Scholar 

  • Zhao N, He C, Jiang Z, Li J, Li Y (2006) Fabrication and growth mechanism of carbon nanotubes by catalytic chemical vapor deposition. Mater Lett 60(2):159–163. doi:10.1016/j.matlet.2005.08.009

    Article  CAS  Google Scholar 

  • Zhuang HL, Zheng GP, Soh AK (2008) Interactions between transition metals and effective carbon nanotubes. Comput Mater Sci 43(4):823–828. doi:10.1016/j.commatsci.2008.01.071

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Shafiekhani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nayeb Sadeghi, S., Shafiekhani, A. & Vesaghi, M.A. Direct production of carbon nanotubes decorated with Cu2O by thermal chemical vapor deposition on Ni catalyst electroplated on a copper substrate. J Nanopart Res 13, 4681–4689 (2011). https://doi.org/10.1007/s11051-011-0432-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-011-0432-x

Keywords

Navigation