Skip to main content
Log in

Synthesis of starfish-like Cu2O nanocrystals through γ-irradiation and their application in lithium-ion batteries

  • Brief Communication
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In this study, single-crystalline starfish-like cuprous oxide (Cu2O) nanocrystals with the backbones lengths in the range of 660 nm~16 μm are successfully prepared through γ-irradiation, the cetyltrimethylammonium bromide (CTAB) is used as a capping material or soft colloidal templates. Without the addition of CTAB in the reaction system, irregular Cu2O nanoclusters were obtained and their diameter is about 200 nm~1 μm. Controlling the concentration ratio of CTAB to the copper ions, starfish-like morphology of Cu2O can be obtained in high yield. Their structures are characterized by X-ray diffraction, scanning electron microscopy, and high-resolution transmission electron microscopy. The possible growth mechanism of the starfish structure is discussed in the text. For potential application in lithium-ion batteries, an electrode made of the starfish-like Cu2O shows excellent electrochemical cycling performance and high-rate capability. Compared with the Cu2O nanoclusters, the starfish-like Cu2O exhibits an improved electrochemical cycling stability. The capacity of the starfish-like Cu2O can maintain 340 and 215 mAh g−1 after 50 cycles at the rate of 0.1 C and 5 C, respectively. The reversible capacity holds 60% as the discharge–charge rate even increases by 50 times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Aurbach D, Markovsky B, Weissman I, Levi E, Ein-Eli Y (1999) On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries. Electrochim Acta 45:67–86. doi:10.1016/S0013-4686(99)00194-2

    Article  CAS  Google Scholar 

  • Briskman RN (1992) A study of electrodeposited cuprous oxide photovoltaic cells. Sol Energy Mater Sol Cells 27:361–368. doi:10.1016/0927-0248(92)90097-9

    Article  CAS  Google Scholar 

  • Gao XP, Bao JL, Pan GL, Zhu HY, Huang PX, Wu F, Song DY (2004) Preparation and electrochemical performance of polycrystalline and single crystalline CuO nanorods as anode materials for Li ion battery. J Phys Chem B 108:5547–5551. doi:10.1021/jp037075k

    Article  CAS  Google Scholar 

  • Hara M, Kondo T, Komoda M, Ikeda S, Kondo JN, Domen K, Hara M, Shinohara K, Tanaka A (1998) Cu2O as a photocatalyst for overall water splitting under visible light irradiation. Chem Commun 3:357–358. doi:10.1039/A707440I

    Article  Google Scholar 

  • Ke FS, Wei GZ, Xue LJ, Li JT, Fan XY, Sun SG (2009) One-step fabrication of CuO nanoribbons array electrode and its excellent lithium storage performance. Electrochim Acta 54:5825–5829. doi:10.1016/j.electacta.2009.05.038

    Article  CAS  Google Scholar 

  • Lee KT, Cho J (2011) Roles of nanosize in lithium reactive nanomaterials for lithium ion batteries. Nano Today 6:28–41. doi:10.1016/j.nantod.2010.11.002

    Article  CAS  Google Scholar 

  • Li YG, Tan B, Wu YY (2008) Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability. Nano Lett 8:265–270. doi:10.1021/nl0725906

    Article  CAS  Google Scholar 

  • Miao WF, Liu HR, Zhang ZM, Chen JF (2008) Large-scale growth and shape evolution of micrometer-sized Cu2O cubes with concave planes via γ-irradiation. Solid State Sci 10(10):1322–1326. doi:10.1016/j.solidstatesciences.2008.01.015

    Article  CAS  Google Scholar 

  • Ming Y, Stephen OB (2003) Synthesis of monodisperse nanocrystals of manganese oxides. J Am Chem Soc 125:10180–10181. doi:10.1021/ja0362656

    Article  Google Scholar 

  • Morales J, Sanchez L, Bijiani S, Martinez L, Gabas M, Ramos-Barrado JR (2005) Electrodeposition of Cu2O: an excellent method for obtaining films of controlled morphology and good performance in Li–ion batteries. Electrochem Solid-State Lett 8:A159–A162. doi:10.1149/1.1854126

    Article  CAS  Google Scholar 

  • Naghavi K, Saion E, Rezaee K, Yunus WM (2010) Influence of dose on particle size of colloidal silver nanoparticles synthesized by gamma radiation. Radiat Phys chem 79:1203–1208. doi:10.1016/j.radphyschem.2010.07.009

    Article  CAS  Google Scholar 

  • Park JC, Kim J, Kwon H, Song H (2009) Gram-scale synthesis of Cu2O nanocubes and subsequent oxidation to CuO hollow nanostructures for lithium-ion battery anode materials. Adv Mater 2:803–807. doi:10.1002/adma.200800596

    Article  Google Scholar 

  • Peng X, Wickham J, Alivisatos AP (1998) Kinetics of II–VI and III–V colloidal semiconductor nanocrystal growth: “focusing” of size distributions. J Am Chem Soc 1120:5343–5344. doi:10.1021/ja9805425

    Article  Google Scholar 

  • Poizot P, Laruelle S, Grugeon S, Dupont L, Taracon JM (2000) Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407:496–498. doi:10.1038/35035045

    Article  CAS  Google Scholar 

  • Stodilka RZ, Jeffrey J, Carson L, Yu K, Li CS, Wilkinson D (2009) Optical degradation of CdSe/ZnS quantum dots upon gamma-ray irradiation. J Phys Chem C 113:2580–2585. doi:10.1021/jp808836g

    Article  CAS  Google Scholar 

  • Taberna PL, Mitra S, Poizot P, Simon P, Tarascon JM (2006) High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nat Mater 5:567–573. doi:10.1038/nmat1672

    Article  CAS  Google Scholar 

  • Wang ZG, Zu XT, Xiang X, Yu HJ (2006) Photoluminescence from TiO2/PMMA nanocomposite prepared by c radiation. J Nanopart Res 8:137–139. doi:10.1007/s11051-005-7527-1

    Article  Google Scholar 

  • Xiang JY, Tu JP, Yuan YF, Zhou Y, Zhang L (2009) Improved electrochemical performances of core–shell Cu2O/Cu composite prepared by a simple one-step method. Electrochem Commun 11:262–265. doi:10.1016/j.elecom.2008.11.029

    Article  CAS  Google Scholar 

  • Xu HL, Wang WZ, Zhu W (2006) A facile strategy to porous materials: coordination-assisted heterogeneous dissolution route to the spherical Cu2O single crystallites with hierarchical pores. Micropor Mesopor Mater 95:321–328. doi:10.1016/j.micromeso.2006.06.007

    Article  CAS  Google Scholar 

  • Yang SG, Chen QD, Shen XH (2007) Effect of ethylene glycol on the morphology of Cu2O nanoparticles synthesized in W/O microemulsion by γ-irradiation. Spectrosc Spect Anal 27(11):2155–2159. doi:CNKI:SUN:GUAN.0.2007-11-002

    CAS  Google Scholar 

  • Yu Y, Du FP, Yu JC, Zhuang YY, Wong PK (2004) One-dimensional shape-controlled preparation of porous Cu2O nano-whiskers by using CTAB as a template. J Solid State Chem 177:4640–4647. doi:10.1016/j.jssc.2004.10.025

    Article  CAS  Google Scholar 

  • Zhang XJ, Zhang DG, Ni XM, Song JM, Zheng HG (2008) Synthesis and electrochemical properties of different sizes of the CuO particles. J Nanopart Res 10:839–844. doi:10.1007/s11051-007-9320-9

    Article  CAS  Google Scholar 

  • Zhang L, Li H, Ni YH, Li J, Liao KM, Zhao GH (2009) Porous cuprous oxide microcubes for non-enzymatic amperometric hydrogen peroxide and glucose sensing. Electrochem Commun 11:812–815. doi:10.1016/j.elecom.2009.01.041

    Article  CAS  Google Scholar 

  • Zheng HG, Zhang XJ, Zhang DG, Ni XM (2007) Synthesis and optical properties of Cu2O/SiO2 composite films via gamma-irradiation route. Mater Lett 61(1):248–250. doi:10.1016/j.matlet.2006.04.047

    Article  Google Scholar 

Download references

Acknowledgments

We greatly appreciate the help from Central Laboratory of Analysis & Structure Research in University of Science and Technology of China (USTC). This study is financially supported the National Science Foundation for Postdoctoral Scientists of China (no. 112300-X91002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weijun Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, W., Chen, G., He, G. et al. Synthesis of starfish-like Cu2O nanocrystals through γ-irradiation and their application in lithium-ion batteries. J Nanopart Res 13, 2705–2713 (2011). https://doi.org/10.1007/s11051-011-0422-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-011-0422-z

Keywords

Navigation