Skip to main content
Log in

Importance of poly(ethylene glycol) conformation for the synthesis of silver nanoparticles in aqueous solution

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Silver nanoparticles (NPs) were prepared using silver nitrate (AgNO3) as a precursor in an aqueous solution of poly(ethylene glycol) (PEG), which acted as both a reducing and stabilizing agent. The UV/Vis spectra showed that PEG 100 (100 kg/mol) has a remarkable capability to produce silver NPs at 80 °C, but the production of silver NPs by both PEG 2 (2 kg/mol) and PEG 35 (35 kg/mol) was negligible. This difference was explained by the conformation of PEG in the reaction solution: the entangled conformation for PEG 100 and the single-coiled conformation for PEG 2 and PEG 35, which were confirmed by pulse-field-gradient 1H NMR and viscosity measurements. In an aqueous solution, the entangled conformation of PEG 100 facilitated the reduction reaction by caging silver ions and effectively prevented the agglomeration of formed NPs. The reaction in an aqueous PEG 100 solution was observed to be stable under the conditions of a prolonged reaction time or an increased temperature, while no reduction reaction occurred in the PEG 2 solution. The synthesis of silver NPs by PEG 100 was well controlled to produce fine silver NPs with 3.68 ± 1.03 nm in diameter, the size of which remained relatively constant throughout the reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Anersson M, Alfredsson V, Kjellin P, Palmqvist AEC (2002) Macroscopic alignment of silver nanoparticles in reverse hexagonal liquid crystalline templates. Nano Lett 2:1403–1407

    Article  Google Scholar 

  • Bo L, Yang W, Chen M, Gao J, Xue Q (2009) A simple and ‘green’ synthesis of polymer-based silver colloids and their antibacterial properties. Chem Biodivers 6:111–116

    Article  CAS  Google Scholar 

  • Carotenuto G, Pepe GP, Nicolais L (2000) Preparation and characterization of nano-sized Ag/PVP composites for optical applications. Eur Phys J B 16:11–17

    Article  CAS  Google Scholar 

  • de Gennes PG (1976a) Dynamics of entangled polymer solutions. II. Inclusion of hydrodynamics interactions. Macromolecules 9:594–598

    Article  Google Scholar 

  • de Gennes PG (1976b) Dynamics of entangled polymer solutions. I. The Rouse model. Macromolecules 9:587–593

    Article  Google Scholar 

  • de Gennes PG (1979) Scaling concepts in polymer physics. Cornell University Press, New York

    Google Scholar 

  • Fievet F, Lagier JP, Blin B, Beaudoin B, Figlarz M (1989) Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and sub-micron size metal particles. Solid State Ionics 32–3:198–205

    Article  Google Scholar 

  • Gao Y, Jiang P, Song L, Wang JX, Liu LF, Liu DF, Xiang YJ, Zhang ZX, Zhao XW, Dou XY, Luo SD, Zhou WY, Xie SS (2006) Studies on silver nanodecahedrons synthesized by PVP-assisted N, N-dimethylformamide (DMF) reduction. J Cryst Growth 289:376–380

    Article  CAS  Google Scholar 

  • Gorensek M, Recelj P (2007) Nanosilver functionalized cotton fabric. Text Res J 77:138–141

    Article  CAS  Google Scholar 

  • Gosheger G, Hardes J, Ahrens H, Streitburger A, Buerger H, Erren M, Gunsel A, Kemper FH, Winkelmann W, von Eiff C (2004) Silver-coated megaendoprostheses in a rabbit model—an analysis of the infection rate and toxicological side effects. Biomaterials 25:5547–5556

    Article  CAS  Google Scholar 

  • Henglein A, Giersig M (1999) Formation of colloidal silver nanoparticles: capping action of citrate. J Phys Chem B 103:9533–9539

    Article  CAS  Google Scholar 

  • Hollinger MA (1996) Toxicological aspects of topical silver pharmaceuticals. Crit Rev Toxicol 26:255–260

    Article  CAS  Google Scholar 

  • Hong KH, Park JL, Sul IH, Youk JH, Kang TJ (2006) Preparation of antimicrobial poly(vinyl alcohol) nanofibers containing silver nanoparticles. J Polym Sci B 44:2468–2474

    Article  CAS  Google Scholar 

  • Ilic V, Saponjic Z, Vodnik V, Molina R, Dimitrijevic S, Jovancic P, Nedeljkovic J, Radetic M (2009) Antifungal efficiency of corona pretreated polyester and polyamide fabrics loaded with Ag nanoparticles. J Mater Sci 44:3983–3990

    Article  CAS  Google Scholar 

  • Kim JW, Lee JE, Kim SJ, Lee JS, Ryu JH, Kim J, Han SH, Chang IS, Suh KD (2004) Synthesis of silver/polymer colloidal composites from surface-functional porous polymer microspheres. Polymer 45:4741–4747

    Article  CAS  Google Scholar 

  • Kim M, Byun JW, Shin DS, Lee YS (2009) Spontaneous formation of silver nanoparticles on polymeric supports. Mater Res Bull 44:334–338

    Article  CAS  Google Scholar 

  • Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, Berlin

    Google Scholar 

  • Lee HJ, Yeo SY, Jeong SH (2003) Antibacterial effect of nanosized silver colloidal solution on textile fabrics. J Mater Sci 38:2199–2204

    Article  CAS  Google Scholar 

  • Liz-Marzan LM, Lado-Tourino I (1996) Reduction and stabilization of silver nanoparticles in ethanol by nonionic surfactants. Langmuir 12:3585–3589

    Article  CAS  Google Scholar 

  • Luo C, Zhang Y, Zeng X, Zeng Y, Wang Y (2005) The role of poly(ethylene glycol) in the formation of silver nanoparticles. J Colloid Interface Sci 288:444–448

    Article  CAS  Google Scholar 

  • Maneerung T, Tokura S, Rujiravanit R (2008) Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydr Polym 72:43–51

    Article  CAS  Google Scholar 

  • Mills R (1973) Self-diffusion in normal and heavy-water in range 1–45 degrees. J Phys Chem 77:685–688

    Article  CAS  Google Scholar 

  • Pastoriza-Santos I, Liz-Marzan LM (2002a) Formation of PVP-protected metal nanoparticles in DMF. Langmuir 18:2888–2894

    Article  CAS  Google Scholar 

  • Pastoriza-Santos I, Liz-Marzan LM (2002b) Synthesis of silver nanoprisms in DMF. Nano Lett 2:903–905

    Article  CAS  Google Scholar 

  • Popa M, Pradell T, Crespo D, Calderon-Moreno JM (2007) Stable silver colloidal dispersions using short chain polyethylene glycol. Colloids Surf A 303:184–190

    Article  CAS  Google Scholar 

  • Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27:76–83

    Article  CAS  Google Scholar 

  • Shin HS, Yang HJ, Kim SB, Lee MS (2004) Mechanism of growth of colloidal silver nanoparticles stabilized by polyvinyl pyrrolidone in g-irradiated silver nitrate solution. J Colloid Interface Sci 274:89–94

    Article  CAS  Google Scholar 

  • Silvert PY, Herrera-Urbina R, Duvauchelle N, Vijayakrishnan V, Tekaia-Elhsissen K (1996) Preparation of collodial silver dispersions by the polyol process. 1. Synthesis and characterization. J Mater Chem 6:573–577

    Article  CAS  Google Scholar 

  • Silvert PY, Herrera-Urbina R, Tekaia-Elhsissen K (1997) Preparation of collodial silver dispersions by the polyol process. 2. Mechanism of particle formation. J Mater Chem 7:293–299

    Article  CAS  Google Scholar 

  • Slistan-Grijalva A, Herrera-Urbina R, Rivas-Silva JF, Avalos-Borja M, Castillon-Barraza FF, Posada-Amarillas A (2005) Assessment of growth of silver nanoparticles synthesized from an ethylene glycol–silver nitrate–polyvinylpyrrolidone solution. Physica E 25:438–448

    Article  CAS  Google Scholar 

  • Slistan-Grijalva A, Herrera-Urbina R, Rivas-Silva JF, Avalos-Borja M, Castillon-Barraza FF, Posada-Amarillas A (2008) Synthesis of silver nanoparticles in a polyvinylpyrrolidone (PVP) paste, and their optical properties in a film and in ethylene glycol. Mater Res Bull 43:90–96

    Article  CAS  Google Scholar 

  • Son WK, Youk JH, Park WH (2006) Antimicrobial cellulose acetate nanofibers containing silver nanoparticles. Carbohydr Polym 65:430–434

    Article  CAS  Google Scholar 

  • Sun Y, Xia Y (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 298:2176–2179

    Article  CAS  Google Scholar 

  • Sun Y, Mayers B, Herricks T, Xia Y (2003) Polyol synthesis if uniform silver nanowires: a plausible growth mechanism and the supporting evidence. Nano Lett 3:955–960

    Article  CAS  Google Scholar 

  • Sundukov VI, Skirda VD, Maklakov AI (1985) Generalized concentration dependence of macromolecule selfdiffusion coefficients in polyethyleneoxide solutions. Polym Bull 14:153–156

    Article  CAS  Google Scholar 

  • Yeo SY, Jeong SH (2003) Preparation and characterization of polypropylene/silver nanocimposite fibers. Polym Int 52:1053–1057

    Article  CAS  Google Scholar 

  • Zhang Z, Zhao B, Hu L (1996) PVP protective mechanism of ultrafine silver powder synthesized by chemical reduction processes. J Solid State Chem 121:105–110

    Article  CAS  Google Scholar 

  • Zhao T (2004) NMR pulse sequence development and studies of threaded macromolecules. Dissertation, Georgia Institute of Technology

Download references

Acknowledgments

We are grateful to Dr. Matthew Tarr at the University of New Orleans for the access to the UV/Vis/NIR spectrometer and to Dr. Jibao He at Tulane University for his assistance with TEM. We also thank Dr. Ryan Slopek at the Southern Regional Research Center, Dr. Marcus Foston at Georgia Institute of Technology, and Cara Cotter at the University of New Orleans for their reviews.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunghyun Nam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nam, S., Parikh, D.V., Condon, B.D. et al. Importance of poly(ethylene glycol) conformation for the synthesis of silver nanoparticles in aqueous solution. J Nanopart Res 13, 3755–3764 (2011). https://doi.org/10.1007/s11051-011-0297-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-011-0297-z

Keywords

Navigation