Skip to main content
Log in

Genesis of supported carbon-coated Co nanoparticles with controlled magnetic properties, prepared by decomposition of chelate complexes

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Following procedures formerly developed for the preparation of supported heterogeneous catalysts, carbon-coated cobalt nanoparticles dispersed on porous alumina have been prepared by impregnation of γ-Al2O3 with (NH4)2[Co(EDTA)] and thermal decomposition in inert atmosphere. Below 350 °C, Co(II) ions are complexed in a hexa-coordinated way by the EDTA ligand. The thermal treatment at 400–900 °C leads to the EDTA ligand decomposition and recovering of the support porosity, initially clogged by the impregnated salt. According to X-ray absorption spectroscopy, and due to in situ redox reactions between the organic ligand and Co(II), both oxidic and metallic cobalt phases are formed. Characterisation by transmission electron microscopy, X-ray diffraction and magnetic measurements reveals that an increase in the treatment temperature leads to an increase of the degree of cobalt reduction as well as to a growth of the cobalt metal particles. As a consequence, the samples prepared at 400–700 °C exhibit superparamagnetism and a saturation magnetisation of 1.7–6.5 emu g−1 at room temperature, whilst the sample prepared at 900 °C has a weak coercivity (0.1 kOe) and a saturation magnetisation of 12 emu g−1. Metal particles are homogeneously dispersed on the support and appear to be protected by carbon; its elimination by a heating in H2 at 400 °C is demonstrated to cause sintering of the metal particles. The route investigated here can be of interest for obtaining porous magnetic adsorbents or carriers with high magnetic moments and low coercivities, in which the magnetic nanoparticles are protected from chemical aggression and sintering by their coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Andersson N, Corkery RW, Alberius PCA (2007) One-pot synthesis of well ordered mesoporous magnetic carriers. J Mater Chem 17:2700–2705. doi:10.1039/b618502a

    Article  CAS  Google Scholar 

  • Avdeeva LB, Kochubey DI, Shaikhutdinov SK (1999) Cobalt catalysts of methane decomposition: accumulation of the filamentous carbon. Appl Catal A 177:43–51. doi:10.1016/S0926-860X(98)00250-6

    Article  CAS  Google Scholar 

  • Balint I, Miyazaki A (2009) Novel preparation method of well-defined mesostructured nanoaluminas via carbon-alumina composites. Micropor Mesopor Mater 122:216–222. doi:10.1016/j.micromeso.2009.02.033

    Article  CAS  Google Scholar 

  • Bargar JR, Persson P, Brown GE Jr (1999) Outer-sphere adsorption of Pb(II)EDTA on goethite. Geochim Cosmochim Acta 63:2957–2969. doi:10.1016/S0016-7037(99)00264-1

    Article  CAS  Google Scholar 

  • Ben Boubaker H, Mhamdi M, Marceau E, Khaddar-Zine S, Ghorbel A, Che M, Ben Taarit Y, Villain F (2006) Effect of water on cobalt speciation during solid-state synthesis of Co2+/ZSM5 catalysts: quantitative study by TPR and XAS. Micropor Mesopor Mater 93:62–70. doi:10.1016/j.micromeso.2006.02.004

    Article  CAS  Google Scholar 

  • Bozorth RM (1993) Ferromagnetism. IEEE Press, New York

    Book  Google Scholar 

  • Cao Y, Cao J, Zheng M, Liu J, Ji G, Ji H (2007) Facile fabrication of magnetic nanocomposites of ordered mesoporous carbon decorated with nickel nanoparticles. J Nanosci Nanotechnol 7:504–509. doi:10.1166/jnn.2007.136

    Article  CAS  Google Scholar 

  • Chen JP, Lee KM, Sorensen CM, Klabunde KJ, Hadjipanayis GC (1994) Magnetic properties of microemulsion synthesized cobalt fine particles. J Appl Phys 75:5876–5878. doi:10.1063/1.355546

    Article  CAS  Google Scholar 

  • Chen JP, Sorensen CM, Klabunde KJ, Hadjipanayis GC (1995) Enhanced magnetization of nanoscale colloidal cobalt particles. Phys Rev B 51:11527–11532. doi:10.1103/PhysRevB.51.11527

    Article  CAS  Google Scholar 

  • Coronado E, Drillon M, Beltran D, Bernier JC (1984) Random-exchange-coupled chain in the amorphous complex (ethylenediaminetetraacetato)dicobalt hexahydrate (Co2(EDTA)·6H2O): comparison with the crystallized complex. Inorg Chem 23:4000–4004. doi:10.1021/ic00192a031

    Article  CAS  Google Scholar 

  • Dorémieux JL (1967) Thermal evolution of cobalt acetate tetrahydrate in a stream of nitrogen at atmospheric pressure. I. Thermolysis in an open vessel. Bull Soc Chim Fr 12:4586–4592

    Google Scholar 

  • Dormann JL, Fiorani D, Tronc E (1997) Magnetic relaxation in fine-particle systems. Adv Chem Phys 98:283–494

    Article  CAS  Google Scholar 

  • Dumond F, Marceau E, Che M (2007) A study of cobalt speciation in Co/Al2O3 catalysts prepared from solutions of cobalt-ethylenediamine complexes. J Phys Chem C 111:4780–4789. doi:10.1021/jp067781w

    Article  CAS  Google Scholar 

  • El Gendy AA, Ibrahim EMM, Khavrus VO, Krupskaya Y, Hampel S, Leonhardt A, Büchner B, Klingeler R (2009) The synthesis of carbon coated Fe, Co and Ni nanoparticles and an examination of their magnetic properties. Carbon 47:2821–2828. doi:10.1016/j.carbon.2009.06.025

    Article  CAS  Google Scholar 

  • Ennas G, Falqui A, Paschina G, Marongiu G (2005) Iron-cobalt alloy nanoparticles embedded in an alumina xerogel matrix. Chem Mater 17:6486–6491. doi:10.1021/cm051722y

    Article  CAS  Google Scholar 

  • Euzen P, Raybaud P, Krokidis X, Toulhoat H, Le Loarer JL, Jolivet JP, Froidefond C (2002) Porous aluminas. In: Schüth F, Sing KSW, Weitkamp J (eds) Handbook of porous solids, vol 3. Wiley VCH, Weinheim, pp 1591–1677

    Chapter  Google Scholar 

  • Gorria P, Sevilla M, Blanco JA, Fuertes AB (2006) Synthesis of magnetically separable adsorbents through the incorporation of protected nickel nanoparticles in an activated carbon. Carbon 44:1954–1957. doi:10.1016/j.carbon.2006.02.013

    Article  CAS  Google Scholar 

  • Grass RN, Athanassiou EK, Stark WJ (2007) Covalently functionalized cobalt nanoparticles as a platform for magnetic separations in organic synthesis. Angew Chem Int Ed 46:4909–4912. doi:10.1002/anie.200700613

    Article  CAS  Google Scholar 

  • Green M (2005) Organometallic based strategies for metal nanocrystal synthesis. Chem Commun 3002–3011. doi:10.1039/b501835h

  • Gross AF, Diehl MR, Beverly KC, Richman EK, Tolbert SH (2003) Controlling magnetic coupling between cobalt nanoparticles through nanoscale confinement in hexagonal mesoporous silica. J Phys Chem B 107:5475–5482. doi:10.1021/jp034240n

    Article  CAS  Google Scholar 

  • Hill CL, Lamotte A, Althoff W, Brunie JC, Whitesides GM (1976) High-gradient magnetic filtration of small particles of ferro-, ferri- and paramagnetic catalysts and catalyst supports. J Catal 43:53–60. doi:10.1016/0021-9517(76)90292-X

    Article  CAS  Google Scholar 

  • Host JJ, Block JA, Parvin K, Dravid VP, Alpers JL, Sezen T, LaDuca R (1998) Effect of annealing on the structure and magnetic properties of graphite encapsulated nickel and cobalt nanocrystals. J Appl Phys 83:793–801. doi:10.1063/1.366760

    Article  CAS  Google Scholar 

  • Iglesia E (1997) Design, synthesis, and use of cobalt-based Fischer-Tropsch synthesis catalysts. Appl Catal A 161:59–78. doi:10.1016/S0926-860X(97)00186-5

    Article  CAS  Google Scholar 

  • Isupov VP, Chupakhina LE, Mitrofanova RP, Tarasov KA, Rogachev AY, Boldyrev VV (1997) The use of intercalation compounds of aluminium hydroxide for the preparation of nanoscale systems. Solid State Ionics 101–103:265–270. doi:10.1016/S0167-2738(97)84041-6

    Google Scholar 

  • Isupov VP, Mitrofanova RP, Chupakhina LE, Starikova EV, Tarasov KA, Yulikov MM (2005) Mechanism of formation of cobalt nanoparticles in a nanoreactor based on supramolecular system [LiAl2(OH)6]2[Coedta]·nH2O. J Struct Chem 46(S):S165–S170. doi:10.1007/s10947-006-0168-0

    Google Scholar 

  • Isupov VP, Mitrofanova RP, Chupakhina LE, Starikova EV, Bokhonov BB, Yulikov MM (2007) Mechanism of formation of nanosized copper particles in a nanoreactor based on the [LiAl2(OH)6]2[Cuedta]·nH2O supramolecular system. J Struct Chem 48:350–357. doi:10.1007/s10947-007-0052-6

    Article  CAS  Google Scholar 

  • Jin J, Li R, Wang H, Chen H, Liang K, Ma J (2007) Magnetic Fe nanoparticle functionalized water-soluble multi-walled carbon nanotubules towards the preparation of sorbent for aromatic compounds removal. Chem Commun 386–388. doi:10.1039/b610842c

  • Lensveld DJ, Mesu JG, van Dillen AJ, de Jong KP (2001) Synthesis and characterisation of MCM-41 supported nickel oxide catalysts. Micropor Mesopor Mater 44–45:401–407. doi:10.1016/S1387-1811(01)00214-1

    Article  Google Scholar 

  • Leslie-Pelecky DL, Rieke RD (1996) Magnetic properties of nanostructured materials. Chem Mater 8:1770–1783. doi:10.1021/cm960077f

    Article  CAS  Google Scholar 

  • Liu BH, Ding J, Zhong ZY, Dong ZL, White T, Lin JY (2002) Large-scale preparation of carbon-encapsulated cobalt nanoparticles by the catalytic method. Chem Phys Lett 358:96–102. doi:10.1016/S0009-2614(02)00592-4

    Article  CAS  Google Scholar 

  • Lu AH, Schmidt W, Matoussevitch N, Bönnemann H, Spliethoff B, Tesche B, Bill E, Kiefer W, Schüth F (2004) Nanoengineering of a magnetically separable hydrogenation catalyst. Angew Chem Int Ed 43:4303–4306. doi:10.1002/anie.200454222

    Article  CAS  Google Scholar 

  • Ma ZY, Liu XQ, Guan YP, Liu HZ (2006) Synthesis of magnetic silica nanospheres with metal ligands and application in affinity separation of proteins. Colloids Surf A 275:87–91. doi:10.1016/j.colsurfa.2005.04.045

    Article  CAS  Google Scholar 

  • Marceau E, Carrier X, Che M (2009) Impregnation and drying. In: de Jong KP (ed) Synthesis of solid catalysts. Wiley-VCH, Weinheim, pp 59–82

    Chapter  Google Scholar 

  • McCandlish EFK, Michael TK, Neal JA, Lingafelter EC, Rose NJ (1978) Comparison of the structures and aqueous solutions of [(o-phenylenediaminetetraacetato(2-)]cobalt(II) and [ethylenediaminetetraacetato(2-)]cobalt(II). Inorg Chem 17:1383–1394. doi:10.1021/ic50184a001

    Article  CAS  Google Scholar 

  • Mhamdi M, Marceau E, Khaddar-Zine S, Ghorbel A, Che M, Ben Taarit Y, Villain F (2005) Preparation of Co2+/ZSM5 catalysts by solid-state reaction: influence of the precursor on cobalt speciation. Z Phys Chem 219:963–978. doi:10.1524/zpch.219.7.963.67087

    CAS  Google Scholar 

  • Mohapatra S, Pal D, Ghosh SK, Pramanik P (2007) Design of superparamagnetic iron oxide nanoparticle for purification of recombinant proteins. J Nanosci Nanotechnol 7:3193–3199. doi:10.1166/jnn.2007.869

    Article  CAS  Google Scholar 

  • Négrier F, Marceau E, Che M, de Caro D (2003) Role of ethylenediamine in the preparation of alumina-supported Ni catalysts from [Ni(en)2(H2O)2](NO3)2: from solution properties to nickel particles. C R Chimie 6:231–240. doi:10.1016/S1631-0748(03)00026-2

    Article  Google Scholar 

  • Négrier F, Marceau E, Che M, Giraudon JM, Gengembre L, Löfberg A (2005) A systematic study of the interactions between chemical partners (metal, ligands, counterions, and support) involved in the design of Al2O3-supported nickel catalysts from diamine-Ni(II) chelates. J Phys Chem B 109:2836–2845. doi:10.1021/jp0403745

    Article  Google Scholar 

  • Nishijo J, Okabe C, Oishi O, Nishi N (2006) Synthesis, structures and magnetic properties of carbon-encapsulated nanoparticles via thermal decomposition of metal acetylide. Carbon 44:2943–2949. doi:10.1016/j.carbon.2006.05.037

    Article  CAS  Google Scholar 

  • Oliveira LCA, Rios RVRA, Fabris JD, Garg V, Sapag K, Lago RM (2002) Activated carbon/iron oxide magnetic composites for the adsorption of contaminants in water. Carbon 40:2177–2183. doi:10.1016/S0008-6223(02)00076-3

    Article  CAS  Google Scholar 

  • Park IS, Choi M, Kim TW, Ryoo R (2006) Synthesis of magnetically separable ordered mesoporous carbons using furfuryl alcohol and cobalt nitrate in a silica template. J Mater Chem 16:3409–3416. doi:0.1039/b604228g

    Article  CAS  Google Scholar 

  • Pomogailo AD, Dzhardimalieva GI, Rozenberg AS, Muraviev DN (2003) Kinetics and mechanism of in situ simultaneous formation of metal nanoparticles in stabilizing polymer matrix. J Nanopart Res 5:497–519. doi:10.1016/S0008-6223(02)00076-3

    Article  CAS  Google Scholar 

  • Rodgers JL, Rathke JW, Klingler RJ, Marshall CL (2007) Hydrolysis of silicon-hydride bonds catalyzed by ferromagnetic cobalt nanoparticles. Catal Lett 114:145–150. doi:10.1007/s10562-007-9055-3

    Article  CAS  Google Scholar 

  • Rodríguez-González V, Marceau E, Beaunier P, Che M, Train C (2007) Stabilization of hexagonal close-packed metallic nickel for alumina-supported systems prepared from Ni(II) glycinate. J Solid State Chem 180:22–30. doi:10.1016/j.jssc.2006.09.015

    Article  Google Scholar 

  • Sadezky A, Muckenhuber H, Grothe H, Niessner R, Pöschl U (2005) Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information. Carbon 43:1731–1742. doi:10.1016/j.carbon.2005.02.018

    Google Scholar 

  • Sakane H, Watanabe I, Ikeda S (1989) EXAFS and XANES spectra of cobalt(III) EDTA complexes in solids and solutions. Bull Chem Soc Jpn 62:1513–1516. doi:10.1246/bcsj.62.1513

    Article  CAS  Google Scholar 

  • Santini O, de Moraes AR, Mosca DH, Souza PEN, Oliveira AJA, Marangoni R, Wypych F (2005) Structural and magnetic properties of Fe and Co nanoparticles embedded in powdered Al2O3. J Colloid Interface Sci 289:63–70. doi:10.1016/j.jcis.2005.03.050

    Article  CAS  Google Scholar 

  • Schulz H (1999) Short history and present trends of Fischer-Tropsch synthesis. Appl Catal A 186:3–12. doi:10.1016/S0926-860X(99)00160-X

    Article  CAS  Google Scholar 

  • Strathmann TJ, Myneni SCB (2004) Speciation of aqueous Ni(II)-carboxylate and Ni(II)-fulvic acid solutions: combined ATR-FTIR and XAFS analysis. Geochim Cosmochim Acta 68:3441–3458. doi:10.1016/j.gca.2004.01.012

    Article  CAS  Google Scholar 

  • Tan CG, Grass RN (2008) Suzuki cross-coupling reactions on the surface of carbon-coated cobalt: expanding the applicability of core–shell nano-magnets. Chem Commun 4297–4299. doi:10.1039/b807741j

  • Tarasov KA, Isupov VP, Bokhonov BB, Gaponov YA, Tolochko BP, Sharafutdinov MR, Shatskaya SS (2000) Formation of nanosized metal particles of cobalt, nickel, and copper in the matrix of layered double hydroxide. J Mater Synth Process 8:21–27. doi:10.1023/A:1009417626848

    Article  CAS  Google Scholar 

  • Tarasov KA, Isupov VP, Yulikov MM, Yermakov AE, O’Hare D (2003) Magnetic nanoparticles stabilized in layered double hydroxides. Diffusion and defect data—Solid State Data, Pt. B. Solid State Phenom 90–91:527–532. doi:10.4028/www.scientific.net/SSP.90-91.527

    Article  Google Scholar 

  • Tarasov KA, Isupov VP, Bokhonov BB, Gaponov YA, Tolochko BP, Yulikov MM, Yudanov VF, Davidson A, Marceau E, Che M (2008) Control of particle size via chemical composition: Structural and magnetic characterization of Ni–Co alloy nanoparticles encapsulated in lamellar mixed oxides. Micropor Mesopor Mater 107:202–211. doi:10.1016/j.micromeso.2007.05.026

    Article  CAS  Google Scholar 

  • Teng Z, Li J, Yan F, Zhao R, Yang W (2009) Highly magnetizable superparamagnetic iron oxide nanoparticles embedded mesoporous silica spheres and their application for efficient recovery of DNA from agarose gel. J Mater Chem 19:1811–1815. doi:10.1039/b812367e

    Article  CAS  Google Scholar 

  • Tracy JB, Weiss DN, Dinega DP, Bawendi MG (2005) Exchange biasing and magnetic properties of partially and fully oxidized colloidal cobalt nanoparticles. Phys Rev B 72:064404/1–064404/8. doi:10.1103/PhysRevB.72.064404

  • Van de Loosdrecht J, van der Haar M, van den Kraan AM, van Dillen AJ, Geus JW (1997) Preparation and properties of supported cobalt catalysts for Fischer–Tropsch synthesis. Appl Catal A 150:365–376. doi:10.1016/S0926-860X(96)00306-7

    Article  Google Scholar 

  • Van de Loosdrecht J, Balzhinimaev B, Dalmon JA, Niemantsverdriet JW, Tsybulya SV, Saib AM, van Berge PJ, Visagie JL (2007) Cobalt Fischer–Tropsch synthesis: deactivation by oxidation? Catal Today 123:293–302. doi:10.1016/j.cattod.2007.02.032

    Article  Google Scholar 

  • West AR (1984) Solid state chemistry and its application. Wiley, Chichester

    Google Scholar 

  • Xu R, Xie T, Zhao Y, Li Y (2007) Quasi-homogeneous catalytic hydrogenation over monodisperse nickel and cobalt nanoparticles. Nanotechnology 18: 055602/1–055602/5. doi:10.1088/0957-4484/18/5/055602

  • Yang N, Zhu S, Zhang D, Xu S (2008) Synthesis and properties of magnetic Fe3O4-activated carbon nanocomposite particles for dye removal. Mater Lett 62:645–647. doi:10.1016/j.matlet.2007.06.049

    Article  CAS  Google Scholar 

  • Zabinsky SI, Rehr JJ, Ankudinov JJ, Albers RC, Eller MJ (1995) Multiple-scattering calculations of X-ray-absorption spectra. Phys Rev B 52:2995–3009. doi:10.1103/PhysRevB.52.2995

    Article  CAS  Google Scholar 

  • Zhang L, Chen L, Wan QH (2008) Preparation of uniform magnetic microspheres through hydrothermal reduction of iron hydroxide nanoparticles embedded in a polymeric matrix. Chem Mater 20:3345–3353. doi:10.1021/cm703127j

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Françoise Villain (Laboratoire de Chimie Inorganique et Matériaux Moléculaires, UMR 7071 CNRS, UPMC) for her assistance in recording the XAS spectra, and the French Ministry of National Education and Research for financial support through a grant to KT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Marceau.

Electronic supplementary material

Below is the link to the electronic supplementary material.

DOC 1267 kb

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tarasov, K., Beaunier, P., Che, M. et al. Genesis of supported carbon-coated Co nanoparticles with controlled magnetic properties, prepared by decomposition of chelate complexes. J Nanopart Res 13, 1873–1887 (2011). https://doi.org/10.1007/s11051-010-9938-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-010-9938-x

Keywords

Navigation