Skip to main content
Log in

Biogenic Pt uptake and nanoparticle formation in Medicago sativa and Brassica juncea

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The ability of the facultative metallophyte plants, Medicago sativa (M. sativa) and Brassica juncea (B. juncea) to accumulate and translocate platinum (Pt) from aqueous substrates is reported. The influence of Pt concentration in the substrate (5, 10, 20, 40 and 80 ppm), exposure time (24, 48 and 72 h) and substrate pH (2, 3, 5, 7 and 9) was determined. In both plants the concentration of Pt increased with substrate concentration and exposure time. Greater accumulation was detected in the roots of M. sativa than B. juncea, up to a maximum of 94.19 mg Pt g−1 (dry biomass) compared with 38.5 mg Pt g−1 (dry biomass) following exposure to 80 ppm Pt after 72 h exposure, respectively. However, at lower substrate concentrations (5 and 20 ppm) greater quantities of Pt were detected in the shoots of B. juncea, ranging between 0.02 and 0.32 mg Pt g−1 (dry biomass) at 5 ppm across the different time intervals studied, compared with 0.02−0.14 mg Pt g−1 (dry biomass) for M. sativa, suggesting B. juncea to be a better translocator of Pt under idealised conditions at low concentrations. Higher Pt uptake was also observed in acidic media, with a maximum at pH 2 for M. sativa and pH 3 for B. juncea, indicating the role of net surface charge on the bioaccumulation of Pt. Once sequestered Pt(II) was reduced to Pt(0) due to the action of local metabolites. TEM images of M. sativa root samples showed the in vivo formation of Pt nanoparticles between 3 and 100 nm in size and of varying morphologies in the epidermal root cells. In vivo Pt distribution profiles were assessed using proton induced X-ray emission (μ-PIXE) spectroscopy, which showed even distribution across all tissue systems (epidermal, cortical and vascular) within the roots of both M. sativa and B. juncea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson CWN (2005) Biogeochemistry of gold: accepted theories and new opportunities. In: Shtangeeva I (ed) Trace and ultra trace elements in plants and soil. WIT Press, Boston, pp 287–317

    Google Scholar 

  • Baker AJM, McGrath, Reeves RD, Smith JAC (2000) Metal hyperaccumulator plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. In: Terry N, Banuelos G (eds) Phytoremediation of contaminated soil and water. Lewis Publishers, Boca Raton, FL, pp 85–107

    Google Scholar 

  • Bakkaus E, Gouget B, Gallien JP, Khodja H, Carrot F, Morel JL, Collins R (2005) Concentrations and distributions of cobalt in higher plants: the use of micro-PIXE spectroscopy. Nucl Instrum Methods Phys Res B 231:350–356

    Article  CAS  ADS  Google Scholar 

  • Balcerzak M (1992) Analytical methods for the determination of platinum in biological and environmental materials. Analyst 122:67R–74R

    Article  ADS  Google Scholar 

  • Bali R, Siegele R, Harris AT (2010) Phytoextraction of Au: uptake, accumulation and cellular distribution in Medicago sativa and Brassica juncea. Chem Eng J 156:286–297

    Article  CAS  Google Scholar 

  • Bidwell SD, Crawford SA, Woodrow IE, Sommer-Knusden J, Marshall AT (2004) Sub-cellular localization of Ni in the hyperaccumulator Hybanthus floribundus (Lindley) f. muell. Plant Cell Environ 27:705–716

    Article  CAS  Google Scholar 

  • Crist RH, Martin R, Crist DR (1999) Interaction of metal ions with acid site of biosorbents peat moss and vaucheria and model substances alginic and humic acids. Environ Sci Technol 33:2252–2256

    Article  CAS  Google Scholar 

  • Dong W, Lippard SJ (2005) Cellular processing of platinum anticancer drugs. Nat Rev Drug Discov 4:307–320

    Article  Google Scholar 

  • Farago ME, Parsons PJ (1986) The effects of platinum applied as potassium tetrachloroplatinate on Setaria verticillate (L) P. Beav, and its growth on flotation tailings. Environ Technol 7:47–154

    Google Scholar 

  • Farago ME, Parsons PJ (1994) The effects of various platinum metal species on the water plant Eichhornia crassipes (MART.) Solm. Chem Spec Bioavailab 6:1–12

    CAS  Google Scholar 

  • Farago ME, Mullen WA, Payne JB (1979) The uptake of platinum group metals by tomato, bean and corn. Inorg Chim Acta 34:51–154

    Article  Google Scholar 

  • Gao J, Liang G, Zhang B, Kuang Y, Zhang X, Xu B (2007) FePt@CoS2 yolk-shell nanocrystals as a potent agent to kill HeLa cells. J Am Chem Soc 129:1428–1433

    Article  CAS  PubMed  Google Scholar 

  • Gardea-Torresdey JL, Tiemann KJ, Gamez G, Dokken K, Cano-Aguillera I, Renner MW, Furenlid LR (2000) Reduction and accumulation of Gold(III) by Medicago sativa alfalfa biomass: X-ray absorption spectroscopy, pH, and temperature dependence. Environ Sci Technol 34:4392–4396

    Article  CAS  Google Scholar 

  • Gardea-Torresdey JL, Parsons JG, Gomez E, Parson JG, Troiani HE, Santiago P, Jose Yacaman M (2002) Formation and growth of Au nanoparticles inside live alfalfa plants. Nano Lett 2:397–401

    Article  CAS  ADS  Google Scholar 

  • Harris AT, Bali R (2008) On the formation and extent of uptake of Ag nanoparticles by live plants. J Nanopart Res 10:691–695

    Article  CAS  Google Scholar 

  • Haverkamp RG, Marshall AT (2008) The mechanism of metal nanoparticle formation in plants: limits on accumulation. J Nanopart Res. doi:10.1007/s11051-008-9533-6

  • Hrapovic S, Liu Y, Male KB, Luong JHT (2004) Electrochemical biosensing platforms using platinum nanoparticles and carbon nanotubes. Anal Chem 76:1083–1088

    Article  CAS  PubMed  Google Scholar 

  • Kachenko AG, Singh S, Bhatia NP, Siegele R (2008) Quantitative elemental localization in leaves and stems of nickel hyperaccumulating shrub Hybanthus floribundus subsp. Floribundus using micro-PIXE spectroscopy. Nucl Instrum Methods Phys Res B 266:667–676

    Article  CAS  ADS  Google Scholar 

  • Ke H-YD, Birnbaum ER, Darnall DW, Rayson GD, Jackson PJ (1992) Characterization of the carboxyl Groups on Datura Innoxia using Eu(III) luminescence. Environ Sci Technol 26:782–788

    Article  CAS  Google Scholar 

  • Kluppel D, Jakubowski N, Messerschmidt J, Stuewer D, Klockow D (1998) Speciation of platinum metabolites in plants by size-exclusion chromatography and inductively coupled plasma mass spectrometry. J Anal At Spectrom 13:255–262

    Article  Google Scholar 

  • Konishi Y, Ohno K, Saitoh N, Nomura T, Nagamine S, Shiokawa S, Shibasaki H, Takahashi Y, Uruga T (2007) Bioreductive deposition of platinum nanoparticles on the bacterium Shewanella algae. J Biotechnol 18:648–653

    Article  Google Scholar 

  • Lengke MF, Fleet ME, Southam G (2006) Synthesis of platinum nanoparticles by reactions of filamentous cyanobacteria with platinum(iv)–chloride complex. Langmuir 22:7318–7323

    Article  CAS  PubMed  Google Scholar 

  • Lesniewska BA, Messerschmidt J, Jakubowski N, Hulanicki A (2004) Bioaccumulation of platinum group elements and characterization of the species in Lolium multiflorum by size exclusion chromatography coupled with ICP-MS. Sci Total Environ 322:95–108

    Article  CAS  PubMed  Google Scholar 

  • Ramelow GD, Fralic D, Zhao Y (1992) Factors affecting the uptake of aqueous metal ions by dried seaweed biomass. Microbios 72:81–93

    CAS  Google Scholar 

  • Ravindra K, Bencs L, Van Grieken R (2008) Platinum group elements in the environment and their health risks. Sci Total Environ 318:1–43

    Article  Google Scholar 

  • Riddin TL, Gericke M, Whiteley CG (2006) Analysis of the inter- and extracellular formation of platinum nanoparticles by Fusarium oxysporum f. sp. lycopersici using response surface methodology. Nanotechnology 17:3482–3489

    Article  CAS  ADS  PubMed  Google Scholar 

  • Schneider T, Haag-Kerwer A, Maetz M, Niecke M, Povh B, Rausch T, Schußler A (1999) Micro-PIXE studies of elemental distribution in Cd-accumulating Brassica juncea L. Nucl Instrum Methods Phys Res B 158:329–334

    Article  CAS  ADS  Google Scholar 

  • Shacklette HAT, Lakin HW, Huber AE, Gurtin AC (1970) Absorption of gold by plants, US Geological Survey Bullettin 1–23

  • Sharma NC, Sahi SV, Nath S, Parsons JG, Gardea-Torresdey JL, Tarasankar P (2007) Synthesis of plant-mediated gold nanoparticles and catalytic role of biomatrix-embedded nanomaterials. Environ Sci Technol 41:5137–5142

    Article  CAS  PubMed  Google Scholar 

  • Siegele R, Cohen DD, Dytlewski N (1999) The ANSTO high energy heavy ion microprobe. Nucl Instrum Methods Phys Res B 158:31–38

    Article  CAS  ADS  Google Scholar 

  • Sures B, Zimmerman S (2007) Impact of humic substances on the aqueous solubility, uptake and bioaccumulation of platinum, palladium and rhodium in exposure studies with Dreissena polymorpha. Environ Pollut 146:444–451

    Article  CAS  PubMed  Google Scholar 

  • Verkleij JAC, Schat H (1990) Mechanism of metal tolerance in higher plants. In: Shaw AJ (ed) Heavy metal tolerance in plants: evolutionary aspects. CRC Press Inc, Boca Raton, FL, pp 179–191

    Google Scholar 

  • Verstraete D, Riondato J, Vercauteren J, Vanhaecke F, Luc Moens, Dams R, Verloo M (1998) Determination of the uptake of [Pt(NH3)4](NO3)2 by grass cultivated on a sandy loam soil and by cucumber plants, grown hydroponically. Sci Total Environ 218:153–160

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

RB is grateful for the support of the Richard Claude Mankin Scholarship fund at the University of Sydney. The authors are grateful for the assistance of Jeffrey Shi with ICP-OES analysis and Shaun Bulcock with STEM analysis. This work was funded, in part, by the Australian Institute of Nuclear Science and Engineering.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew T. Harris.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 266 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bali, R., Siegele, R. & Harris, A.T. Biogenic Pt uptake and nanoparticle formation in Medicago sativa and Brassica juncea . J Nanopart Res 12, 3087–3095 (2010). https://doi.org/10.1007/s11051-010-9904-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-010-9904-7

Keywords

Navigation