Skip to main content
Log in

Nanoparticles of nickel oxide: growth and organization on zinc-substituted anionic clay matrix by one-pot route at room temperature

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

A room temperature nanocarving strategy is developed for the fabrication of nanoparticles of nickel oxide on zinc-substituted anionic clay matrix (Ni/ZnLDH). It is based on the growth and organization of nanoparticles of nickel oxide which occur during the structural reconstruction of the layered structure of the anionic clay in NiSO4 aqueous solution. No organic compounds are used during the fabrication. The described material was characterized by X-ray diffraction (XRD), IR spectroscopy (FTIR), transmission electron microscopy (TEM), field-emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX) spectroscopy, and X-ray photoelectron spectroscopy (XPS). Results show that the nickel-clay nanoarchitecture consists of small nanoparticles of nickel oxide (average size 7 nm) deposited on the larger nanoparticles (average size 90 nm) of zinc-substituted clay. The optical properties of the new nickel-zinc formulation are studied by UV–Vis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Cai J, Kimura S, Wada M, Kuga S (2009) Nanoporous cellulose as metal nanoparticles support. Biomacromolecules 10:87–94. doi:10.1021/bm800919e

    Article  CAS  PubMed  Google Scholar 

  • Carja G, Kameshima Y, Okada K (2008) Nanoparticles of iron and vanadium oxides supported on iron substituted LDHs: synthesis, textural characterization and their catalytic behavior in ethylbenzene dehydrogenation. Microporous Mesoporous Mater 115:541–547. doi:10.1016/j.micromeso.2008.02.032

    Article  CAS  Google Scholar 

  • Carja G, Kameshima Y, Ciobanu G, Chiriac H, Okada K (2009a) New hybrid nanostructures based on oxacillin–hydrotalcite-like anionic clays and their textural properties. Micron 40:147–150. doi:10.1016/j.micron.2007.12.001

    Article  CAS  PubMed  Google Scholar 

  • Carja G, Kameshima Y, Nakajima A, Dranca C, Okada K (2009b) Nanosized silver–anionic clay matrix as nanostructured ensembles with antimicrobial activity. Int J Antimicrob Agents 34:534–539. doi:10.1016/j.ijantimicag.2009.08.008

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Peng DL, Lin D, Luo X (2007) Preparation and magnetic properties of nickel nanoparticles via the thermal decomposition of nickel organometallic precursor in alkylamines. Nanotechnology 18:505703. doi:10.1088/0957-4484/18/50/505703

    Article  Google Scholar 

  • Cordente N, Respaud M, Senocq F, Casanave MJ, Amiens C, Chaudret B (2001) Synthesis and magnetic properties of nickel nanorods. Nano Lett 1:565–568. doi:10.1021/nl0100522

    Article  CAS  ADS  Google Scholar 

  • Creighton JA, Eadon DG (1991) Ultraviolet-visible absorption spectra of the colloidal metallic elements. J Chem Soc, Faraday Trans 87:3881–3891. doi:10.1039/FT9918703881

    Article  CAS  Google Scholar 

  • Del Arco M, Rives V, Trujillano R, Mallet P (1996) Thermal behaviour of Zn–Cr layered double hydroxides with hydrotalcite-like structures containing carbonate or decavanadate. J Mater Chem 6:1419–1428. doi:10.1039/JM9960601419

    Article  CAS  Google Scholar 

  • Del Arco M, Carriazo D, Martın C, Perez-Grueso AM, Rives V (2005) Acid and redox properties of mixed oxides prepared by calcination of chromate-containing layered double hydroxides. J Solid State Chem 178:3571–3580. doi:10.1016/j.jssc.2005.09.014

    Article  CAS  ADS  Google Scholar 

  • Ely TO, Amiens C, Chaudret B, Snoeck E, Verelst M, Respaud M, Broto JM (1999) Synthesis of nickel nanoparticles. Influence of aggregation induced by modification of poly(vinylpyrrolidone) chain length on their magnetic properties. Chem Mater 11:526–529. doi:10.1021/cm980675p

    Article  CAS  Google Scholar 

  • Huang S, Yang P, Cheng Z, Li C, Fan Y, Kong D, Lin J (2008) Synthesis and characterization of magnetic FexOy-SBA-15 composites with different morphologies for controlled drug release and targeting. J Phys Chem C 112:7130–7137. doi:10.1021/jp800363s

    Article  CAS  Google Scholar 

  • Isobe T, Park SY, Weeks RA, Zuhr RA (1995) The optical and magnetic properties of Ni+-implanted silica. J Non-Cryst Solids 189:173–180. doi:10.1016/0022-3093(95)00230-8

    Article  CAS  ADS  Google Scholar 

  • Joo J, Yu T, Kim YW, Park HM, Wu F, Zhang JZ, Hyeon T (2003) Multigram scale synthesis and characterization of monodisperse tetragonal zirconia nanocrystals. J Am Chem Soc 125:6553–6557. doi:10.1021/ja034258b

    Article  CAS  PubMed  Google Scholar 

  • Kameshima Y, Sasaki H, Isobe T, Nakajima A, Okada K (2009) Synthesis of composites of sodium oleate/Mg–Al-ascorbic acid-layered double hydroxides for drug delivery applications. Int J Pharm 381:34–39. doi:10.1016/j.ijpharm.2009.07.021

    Article  CAS  PubMed  Google Scholar 

  • Kawamura M, Sato K (2006) Magnetically separable phase-transfer catalysts. Chem Commun 2006:4718–4719. doi:10.1039/b611906a

    Article  Google Scholar 

  • Kim YH, Lee DK, Cha HG, Kim CW, Kang YS (2007) Synthesis and characterization of antibacterial Ag–SiO2 nanocomposite. J Phys Chem C 111:3629–3635. doi:10.1021/jp068302w

    Article  CAS  Google Scholar 

  • Lee IS, Lee N, Park JN, Kim BH, Yi YW, Kim T, Kim TK, Lee IH, Paik SR, Hyeon T (2006) Ni/NiO core/shell nanoparticles for selective binding and magnetic separation of histidine-tagged proteins. J Am Chem Soc 128:10658–10659. doi:10.1021/ja063177n

    Article  CAS  PubMed  Google Scholar 

  • Li D, Komarneni S (2006) Microwave-assisted polyol process for synthesis of Ni nanoparticles. J Am Ceram Soc 89:1510–1517. doi:10.1111/j.1551-2916.2006.00925.x

    Article  CAS  Google Scholar 

  • Li C, Wang L, Wei M, Evans DG, Duan X (2008) Large oriented mesoporous self-supporting Ni–Al oxide films derived from layered double hydroxide precursors. J Mater Chem 18:2666–2672. doi:10.1039/b801620h

    Article  CAS  Google Scholar 

  • Miyata S, Okada A (1977) Synthesis of hydrotalcite-like compounds and their physico-chemical properties—the systems Mg2+-Al3+-SO4 2− and Mg2+-Al3+-CrO4 2−. Clays Clay Miner 25:14–18. doi:10.1346/CCMN.1977.0250103

    Article  Google Scholar 

  • Moulder JF, Stickle WF, Sobol PE, Bomben KD (1992) Handbook of X-ray photoelectron spectroscopy. Perkin–Elmer Corporation (Physical Electronics), Eden Prairie, MN, USA

  • Pandey B, Ghosh S, Srivastava P, Kabiraj D, Shripati T, Lalla NP (2009) Synthesis of nanodimensional ZnO and Ni-doped ZnO thin films by atom beam sputtering and study of their physical properties. Phys E 41:1164–1168. doi:10.1016/j.physe.2009.01.016

    Article  CAS  Google Scholar 

  • Park J, Kang E, Son SU, Park HM, Lee MK, Kim J, Kim KW, Noh HJ, Park JH, Bae CJ, Park JG, Hyeon T (2005) Monodisperse nanoparticles of Ni and NiO: synthesis, characterization, self-assembled superlattices, and catalytic applications in the suzuki coupling reaction. Adv Mater 17:429–434. doi:10.1002/adma.200400611

    Article  CAS  Google Scholar 

  • Park M, Choi CL, Seo YJ, Yeo SK, Choi J, Komarneni S, Lee JH (2007) Reactions of Cu2+ and Pb2+ with Mg/Al layered double hydroxide. Appl Clay Sci 37:143–148. doi:10.1016/j.clay.2006.12.006

    Article  CAS  Google Scholar 

  • Perez Ramirez J, Guido M, Kaptejin F, Moulijn J (2001) In situ investigation of the thermal decomposition of Co–Al hydrotalcite in different atmospheres. J Mater Chem 11:821–830. doi:10.1039/b009320n

    Article  CAS  Google Scholar 

  • Refait P, Abdelmoula M, Simon L, Genin JM (2005) Mechanisms of formation and transformation of Ni–Fe layered double hydroxides in SO3 2− and SO4 2− containing aqueous solutions. J Phys Chem Solids 66:911–917. doi:10.1016/j.jpcs.2004.12.003

    Article  CAS  ADS  Google Scholar 

  • Reichle WT, Yang SY, Everhardt SD (1986) The nature of the thermal decomposition of a catalytically active anionic clay mineral. J Catal 10:352–359. doi:10.1016/0021-9517(86)90262-9

    Article  Google Scholar 

  • Richardson M, Braterman P (2009) Cation exchange by anion-exchanging clays: the effects of particle aging. J Mater Chem 19:7965–7975. doi:10.1039/b908516e

    Article  CAS  Google Scholar 

  • Rives V, Kannan S (2000) Layered double hydroxides with the hydrotalcite-type structure containing Cu2+, Ni2+ and Al3+. J Mater Chem 10:489–495. doi:10.1039/a908534c

    Article  CAS  Google Scholar 

  • Salavati-Niasari M (2009) Template synthesis and characterization of hexaaza nickel(II) complex nanoparticles entrapped within the zeolite-Y. Inorg Chim Acta 362:3738–3744. doi:10.1016/j.ica.2009.04.043

    Article  CAS  Google Scholar 

  • Tu C, Du J, Yao L, Yang C, Ge M, Xu C, Gao M (2009) Magnetic Ni/SiO2 composite microcapsules prepared by one-pot synthesis. J Mater Chem 19:1245–1251. doi:10.1039/b816568h

    Article  CAS  Google Scholar 

  • Van de Hulst HC (1981) Light scattering by small particles. Dover Publications, New York

    Google Scholar 

Download references

Acknowledgments

The support of the contract PNCDI NATOEPA 71-020/2007 and the Grant CNCSIS IDEI 608/2009 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriela Carja.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carja, G., Nakajima, A., Dranca, C. et al. Nanoparticles of nickel oxide: growth and organization on zinc-substituted anionic clay matrix by one-pot route at room temperature. J Nanopart Res 12, 3049–3056 (2010). https://doi.org/10.1007/s11051-010-9899-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-010-9899-0

Keywords

Navigation