Skip to main content
Log in

A novel method to realize the transition from silver nanowires to nanoplates based on the degradation of DNA

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Silver “nano-necklaces” and nanoplates in DNA/Tris–EDTA (TE) solution are prepared using hydrothermal method. The nano-necklaces are composed of many spherical silver nanoparticles which are joined together by the DNA chain. Further the transition from silver nano-necklaces to triangular and hexagonal nanoplates is realized based on the degradation of DNA. Transmission electron microscopy, selected area electron diffraction, ultraviolet–visible spectroscopy, X-ray diffraction, and agarose gel electrophoresis are used to characterize silver nanoparticles and the change of DNA structure. The results show that TE acts as not only the buffer solution but also the reducing agent. DNA serves as templates to offer the nucleation sites and induce the growth of silver nanostructures. Hydrothermal process provides high temperature and pressure to activate the reducing property of TE and denature or degrade DNA molecules. The formation mechanism of silver nano-necklaces and nanoplates has also been studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Becerril HA, Stoltenberg RM, Monson CF, Woolley AT (2004) Ionic surface masking for low background in single- and double-stranded DNA-templated silver and copper nanorods. J Mater Chem 14:611–616

    Article  CAS  Google Scholar 

  • Becerril HA, Stoltenberg RM, Wheeler DR, Davis RC, Harb JN, Woolley AT (2005) DNA-templated three-branched nanostructures for nanoelectronic devices. J Am Chem Soc 127:2828–2829

    Article  CAS  PubMed  Google Scholar 

  • Becerril HA, Ludtke P, Willardson BM, Woolley AT (2006) DNA-templated nickel nanostructures and protein assemblies. Langmuir 22:10140–10144

    Article  CAS  PubMed  Google Scholar 

  • Berti L, Alessandrini A, Facci P (2005) DNA-templated photoinduced silver deposition. J Am Chem Soc 127:11216–11217

    Article  CAS  PubMed  Google Scholar 

  • Braun E, Eichen Y, Sivan U, Ben-Yoseph G (1998) DNA-templated assembly and electrode attachment of a conducting silver wire. Nature 391:775–778

    Article  CAS  PubMed  ADS  Google Scholar 

  • Chen SH, Carroll DL (2002) Synthesis and characterization of truncated triangular silver nanoplates. Nano Lett 2:1003–1007

    Article  CAS  ADS  Google Scholar 

  • Chen P, Wu QS, Ding YP (2008) Facile synthesis of monodisperse silver nanoparticles by bio-template of squama inner coat of onion. J Nanopart Res 10:207–213

    Article  CAS  Google Scholar 

  • Germain V, Li J, Ingert D, Wang ZL, Pileni MP (2003) Stacking faults in formation of silver nanodisks. J Phys Chem B 107:8717–8720

    Article  CAS  Google Scholar 

  • Gu Q, Cheng CD, Haynie DT (2005) Cobalt metallization of DNA: toward magnetic nanowires. Nanotechnology 16:1358–1363

    Article  CAS  ADS  Google Scholar 

  • Hatakeyama Y, Umetsu M, Ohara S, Kawadai F, Takami S, Naka T, Adschiri T (2008) Homogenous spherical mosslike assembly of Pd nanoparticles by using DNA compaction: application of Pd-DNA hybrid materials to volume-expansion hydrogen switches. Adv Mater 20:1122–1128

    Article  CAS  Google Scholar 

  • Hossain Z, Huq F (2002) Studies on the interaction between Ag+ and DNA. J Inorg Biochem 91:398–404

    Article  CAS  PubMed  Google Scholar 

  • Khanna PK, Kulkarni D, Beri RK (2008) Synthesis and characterization of myristic acid capped silver nanoparticles. J Nanopart Res 10:1059–1062

    Article  CAS  Google Scholar 

  • Kinsella JM, Ivanisevic A (2005) Enzymatic clipping of DNA wires coated with magnetic nanoparticles. J Am Chem Soc 127:3276–3277

    Article  CAS  PubMed  Google Scholar 

  • Kinsella JM, Shalaev MV, Ivanisevic A (2007) Ligation of nanoparticle coated DNA cleaved with restriction enzymes. Chem Mater 19:3586–3588

    Article  CAS  Google Scholar 

  • Li JH, Chu X, Liu YL, Jiang JH, He ZM, Zhang ZW, Shen GL, Yu RQ (2005) A colorimetric method for point mutation detection using high-fidelity DNA ligase. Nucleic Acids Res 33:e168

    Article  PubMed  Google Scholar 

  • Mbindyo JKN, Reiss BD, Martin BR, Keating CD, Natan MJ, Mallouk TE (2001) DNA-directed assembly of gold nanowires on complementary surfaces. Adv Mater 13:249–254

    Article  CAS  Google Scholar 

  • Mertig M, Ciacchi LC, Seidel R, Pompe W, De Vita A (2002) DNA as a selective metallization template. Nano Lett 2:841–844

    Article  CAS  ADS  Google Scholar 

  • Mie G (1908) Beitrge zur Optik trüber Medien speziell kolloidaler Metallsungen. Ann Phys 25:377–445

    Article  CAS  Google Scholar 

  • Monson CF, Woolley AT (2003) DNA-templated construction of copper nanowires. Nano Lett 3:359–363

    Article  CAS  ADS  Google Scholar 

  • Satti A, Aherne D, Fitzmaurice D (2007) Analysis of scattering of conduction electrons in highly conducting bamboolike DNA-templated gold nanowires. Chem Mater 19:1543–1545

    Article  CAS  Google Scholar 

  • Scharer OD (2003) Chemistry and biology of DNA repair. Angew Chem Int Ed 42:2946–2974

    Article  Google Scholar 

  • Spanos N, Koutsoukos PG (1998) The transformation of vaterite to calcite: effect of the conditions of the solutions in contact with the mineral phase. J Cryst Growth 191:783–790

    Article  CAS  ADS  Google Scholar 

  • Xiao SJ, Liu FR, Rosen AE, Hainfeld JF, Seeman NC, Musier-Forsyth K, Kiehl RA (2002) Selfassembly of metallic nanoparticle arrays by DNA scaffolding. J Nanopart Res 4:313–317

    Article  CAS  Google Scholar 

  • Xin HJ, Woolley AT (2003) DNA-templated nanotube localization. J Am Chem Soc 125:8710–8711

    Article  CAS  PubMed  Google Scholar 

  • Xin HJ, Woolley AT (2005) High-yield DNA-templated assembly of surfactant-wrapped carbon nanotubes. Nanotechnology 16:2238–2241

    Article  CAS  ADS  Google Scholar 

  • Yamamoto M, Kashiwagi Y, Nakamoto M (2006) Size-controlled synthesis of monodispersed silver nanoparticles capped by long-chain alkyl carboxylates from silver carboxylate and tertiary amine. Langmuir 22:8581–8586

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Lee JY, Too HP, Chow GM, Gan LM (2006) Stabilization of Pt nanoparticles by single stranded DNA and the binary assembly of Au and Pt nanoparticles without hybridization. J Nanopart Res 8:1017–1026

    Article  CAS  Google Scholar 

  • Zinchenko AA, Yoshikawa K, Baigl D (2005) DNA-templated silver nanorings. Adv Mater 17:2820–2823

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study is supported by the National Science Foundation of China (Grants 20871001, 20671001, and 20731001), the Research Foundation for the Doctoral Program of Higher Education of China (20070357002), the Important Project of Anhui provincial Education Department (Grant ZD2007004-1), the Key Laboratory of Environment-friendly Polymer Materials, and Functional Material of Inorganic Chemistry of Anhui Province.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuhua Shen or Anjian Xie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, C., Shen, Y., Xie, A. et al. A novel method to realize the transition from silver nanowires to nanoplates based on the degradation of DNA. J Nanopart Res 12, 2679–2687 (2010). https://doi.org/10.1007/s11051-010-0005-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-010-0005-4

Keywords

Navigation