Skip to main content
Log in

Effect of water and UV passivation on the luminescence of suspensions of silicon quantum dots

  • Special focus: Safety of Nanoparticles
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

This article presents the evolution of the photo-luminescence (PL) of silicon quantum dots (QDs) with an average diameter of 5–6 nm dispersed in alcohol under different conditions. Two samples were considered after alcohol dispersion: freshly synthesized (kept in air for 2 days) QDs which do not exhibit luminescence and air-aged (kept in air for 2 years) QDs exhibiting red-IR luminescence. Experiments performed with addition of a small volume of water, followed by heating for different times showed that the oxidation occurs gradually until transforming totally the initial material in SiO2. The oxidation process does not enable the appearance of PL from the Si core for dispersed non-aged powders, while it results in a blue shift of the PL maximum intensity for the aged ones. The results obtained after UV illumination clearly indicate an effect of the UV irradiation on the luminescence of QDs dispersed in aqueous environment, and the treatments with acidic water lead to the conclusion of a possible enhancement of the PL by hydrogen passivation of the non-radiative defects. This result should be taken into account for post-production treatments and applications, more particularly, considering a controlled and safe use of luminescent Si QDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bakos T, Rashkeev S, Pantelides S (2004) H2O and O2 molecules in amorphous SiO2: defect formation and annihilation mechanisms. Phys Rev B 69:195–206

    Article  CAS  Google Scholar 

  • Batyrev I, Tuttle B, Fleetwood D, Schrimpf R, Tsetseris L, Pantelides S (2008) Reaction of water molecules in silica-based network glasses. Phys Rev Lett 100:105503

    Article  CAS  PubMed  ADS  Google Scholar 

  • Burns A et al (2006) Fluorescent core-shell silica nanoparticles: towards “Lab on a Particle” architectures for nanobiotechnology. Chem Soc Rev 35(11):1028–1042

    Article  CAS  PubMed  Google Scholar 

  • Bychto L, Balaguer M, Pastor E, Chirvony V, Matveeva E (2008) Influence of preparation and storage conditions on the photoluminescence of porous silicon powder with embedded Si nanocrystals. J Nanopart Res 10:1241–1249

    Article  CAS  Google Scholar 

  • Cartier E, Stathis J, Buchanan D (1993) Passivation and depassivation of silicon dangling bonds at Si/SiO2 interface by atomic hydrogen. Appl Phys Lett 63:1510

    Article  CAS  ADS  Google Scholar 

  • Cerofolini GF, Meda L (1997) Mechanisms and kinetics of room-temperature silicon oxidation. J Non-Cryst Solids 216:140–147

    Article  CAS  ADS  Google Scholar 

  • Crossley A, Sofield CJ, Sugden S, Clampitt R, Bradley C (1995) In situ low temperature cleaning of silicon surfaces using hydrogen atoms. Vacuum 46(7l):667–672

    Article  CAS  Google Scholar 

  • Delerue C, Allan G, Lannoo M (1999) Theoritical aspects of the luminescence of porous silicon. Phys Rev B 48:11024–11035

    Article  ADS  Google Scholar 

  • Ehbrecht M, Ferkel H, Smirnov V, Stelmakh O, Zhang W, Huisken F (1995) Laser-driven flow reactor as a cluster beam source. Rev Sci Instrum 66:3833–3837

    Article  CAS  ADS  Google Scholar 

  • Fujioka K, Hiruoka M, Sato K, Manabe N, Miyasaka R, Hanada S, Hoshino A, Tilley RD, Manome Y, Hirakuri K, Yamamoto K (2008) Luminescent passive-oxidized silicon quantum dots as biological staining labels and their cytotoxicity effects at high concentration. Nanotechnology 19:415102

    Article  CAS  Google Scholar 

  • Hardman R (2006) A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect 114:165–172

    Article  PubMed  Google Scholar 

  • Huisken F, Amans D, Guillois O, Ledoux G, Reynaud C, Hofmeister H, Cichos F, Martin J (2003) Nanostructuration with visible-light-emitting silicon nanocrystals. New J Phys 5:10.1–10.10

    Article  Google Scholar 

  • Kasi SR, Liehr M (1992) Preoxidation Si cleaning and its impact on metal oxide semiconductor characteristics. J Vac Sci Technol A 10(4):795–801

    Article  CAS  ADS  Google Scholar 

  • Kirk C (1998) Quantitative analysis of the effect of disorder-induced mode coupling on infrared absorption in silica. Phys Rev B 38:1255–1273

    Article  ADS  Google Scholar 

  • Lacour F, Guillois O, Portier X, Perez H, Herlin N, Reynaud C (2007) Laser pyrolysis synthesis and characterisation of luminescent silicon nanocrystals. Phys E 38:11–15

    Article  CAS  Google Scholar 

  • Ledoux G, Gong J, Huisken F, Guillois O, Reynaud C (2002) Photoluminescence of size-separated silicon nanocrystals: confirmation of quantum confinement. Appl Phys Lett 80:4834–4836

    Article  CAS  ADS  Google Scholar 

  • Li Z, Ruckenstein E (2004) Water soluble poly(acrylic acid) grafted luminescent silicon nanoparticles and their use as fluorescencent biological staining labels. Nano Lett 4:1463–1467

    Article  CAS  ADS  Google Scholar 

  • Li X, He Y, Talukdar S, Swihart M (2003) Process for preparing macroscopic quantities of brightly photoluminescent silicon nanoparticles with emission spanning the visible spectrum. Langmuir 19:8490–8496

    Article  CAS  Google Scholar 

  • Lockwood D, Wang A, Bryskiewicz B (1994) Optical absorption evidence for quantum confinement effects in porous silicon. Solid States Commun 89:587–589

    Article  CAS  ADS  Google Scholar 

  • Meier C, Gondorf A, Lüttjohann S, Lorke A, Wiggers H (2007) Silicon nanoparticles: absorption, emission, and nature of the electronic bandgap. J Appl Phys 101:103112 1–8

    Google Scholar 

  • Mende G, Finster J, Flamm D, Schulze D (1983) Oxidation of etched silicon in air at room temperature; Measurements with ultrasoft X-ray photoelectron spectroscopy (ESCA) and neutron activation analysis. Surf Sci 128(1, 2):169–175

    CAS  ADS  Google Scholar 

  • Morita H, Ohmi T, Hasegawa E, Kawakami M, Ohwada M (1990) Growth of native oxide on a silicon surface. J Appl Phys 68:1272–1281

    Article  CAS  ADS  Google Scholar 

  • Morse KA, Pianetta P (2004) Room temperature photo-oxidation of NH4F-prepared H–Si(111)(1 × 1) and Hx–Si(100). J Appl Phys 96(11):6851

    Article  CAS  ADS  Google Scholar 

  • Niemeyer CM (2001) Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science. Angew Chem Int Ed 40:4128–4158

    Article  CAS  Google Scholar 

  • Robertson J (1988) Electronic structure of defects in amorphous SiO2. In: Devine RAB (ed) The physics and technology of amorphous SiO2. Plenum, New York, pp 91–117

    Google Scholar 

  • Rogach A (ed) (2008) Semiconductor nanocrystal quantum dots: synthesis, assembly, spectroscopy and applications. Berlin: Springer Publications

  • Salh R (2007) Si and Ge nanocluster formation in Silica matrix. Semiconductors 41:381–386

    Article  CAS  ADS  Google Scholar 

  • Savchyn O, Kik PG, Todi RM, Coffey K (2008) Effect of hydrogen passivation on luminescence-center-mediated Er excitation in Si-rich SiO2 with and without Si nanocrystals. PRB 77:205438

    Article  ADS  CAS  Google Scholar 

  • Shiohara A, Hoshino A, Hanaki K, Suzuki K, Yamamoto K (2004) On the cyto-toxicity caused by quantum dots. Microbiol Immunol 48:669–675

    CAS  PubMed  Google Scholar 

  • Tardif F, Chabli A, Danel A, Rochat N, Veillerot M (2003) Thermal evolution of chemical oxides and (100) silicon at 300 °C in ambient air as seen by attenuated total reflection infrared spectroscopy. J Electrochem Soc 150(6):G333–G338

    Article  CAS  Google Scholar 

  • Veinot J (2006) Synthesis, surface functionalization, and properties of freestanding silicon nanocrystals. Chem Commun 4160–4168

  • Wolkin M, Jorne J, Fauchet P, Allan G, Delerue C (1999) Electronic states and luminescence in porous silicon quantum dots: the role of oxygen. Phys Rev Lett 82:197–200

    Article  CAS  ADS  Google Scholar 

  • Yang DQ, Gillet J, Meunier M, Sacher E (2005) Room temperature oxidation kinetics of Si nanoparticles in air, determined by X-ray photoelectron spectroscopy. J Appl Phys 97:024303

    Article  ADS  CAS  Google Scholar 

  • Yoffe A (1993) Low-dimensional systems: quantum size effects and electronic properties of semiconductor microcrystallites (zero-dimensional systems) and some quasi-two-dimensional systems. Adv Phys 42:173–266

    Article  CAS  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Herlin-Boime.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vincent, J., Maurice, V., Paquez, X. et al. Effect of water and UV passivation on the luminescence of suspensions of silicon quantum dots. J Nanopart Res 12, 39–46 (2010). https://doi.org/10.1007/s11051-009-9708-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-009-9708-9

Keywords

Navigation