Skip to main content
Log in

Electrical properties of surface functionalized silicon nanoparticles

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The present study relates to the applicability of silicon nanoparticles as basic component in printing inks for the fabrication of printable electronic devices. It is systematically investigated, how the surface functionalization of silicon nanoparticles with 1-alkenes affects the electrical properties of thin films made of them. Therefore, films of as-prepared silicon nanoparticles with a size of 42 nm as well as freshly etched ones, both terminated with hydrogen, are compared with films of silicon nanoparticles functionalized with n-octene, n-dodecene, allylmercaptan, and allylamine, respectively. It is found, that the activation energy of the electron transport through the films is in the range of 0.5 eV and scales with the polarity of the functionalization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 2

Similar content being viewed by others

References

  • Böttger H, Bryksin VV (1985) Hopping conduction in solids. VCH, Weinheim

    Google Scholar 

  • Britton DT, Härting M (2006) Printed nanoparticulate composites for silicon thick-film electronics. Pure Appl Chem 78:1723–1739

    Article  CAS  Google Scholar 

  • Buriak JM (2002) Organometallic chemistry on silicon and germanium surfaces. Chem Rev 102:1271–1308

    Article  CAS  PubMed  Google Scholar 

  • Collier CP, Vossmeyer T, Hearth JR (1998) Nanocrystal superlattices. Annu Rev Phys Chem 49:371–404

    Article  CAS  PubMed  ADS  Google Scholar 

  • Compagnoni ChM, Gusmeroli R, Ielmini D et al (2007) Silicon nanocrystal memories: a status update. J Nanosci Nanotechnol 7:193–205

    CAS  PubMed  Google Scholar 

  • Dyre JC (2000) Universality of ac conduction in disordered solids. Rev Mod Physics 72:873–892

    Article  ADS  Google Scholar 

  • Efros AL, Shklovskii BI (1975) Coulomb gap and low temperature conductivity of disordered systems. J Phys C 8:L49–L51

    Article  CAS  ADS  Google Scholar 

  • Fu Y, Willander M, Dutta A et al (2000a) Carrier conduction in a Si-nanocrystal-based single-electron transistor-I. Effect of gate bias. Superlattice Microstruct 28:177–187

    Article  CAS  ADS  Google Scholar 

  • Fu Y, Willander M, Dutta A et al (2000b) Carrier conduction in a Si-nanocrystal-based single-electron transistor-II. Effect of drain bias. Superlattice Microstruct 28:189–198

    Article  CAS  ADS  Google Scholar 

  • Jonscher AK (1996) Universal relaxation law. Chelsea Dielectric Press, London

    Google Scholar 

  • Knipping J, Wiggers H, Rellinghaus B et al (2004) Synthesis of high purity silicon nanoparticles in a low pressure microwave reactor. J Nanosci Nanotechnol 4:1039–1044

    Article  CAS  PubMed  Google Scholar 

  • Koplin E, Niemeyer CM, Simon U (2006) Formation of electrically conducting DNA-assembled gold nanoparticle monolayers. J Mater Chem 16:1338–1344

    Article  CAS  Google Scholar 

  • Kremer F, Schönhals A (2003) Broadband dielectric spectroscopy. Springer, Heidelberg

    Google Scholar 

  • Lampert MA, Mark P (1970) Current injection in solids. Academic, New York

    Google Scholar 

  • Lide DR (ed) (1995) CRC handbook of chemistry and physics. CRC Press, Boca Raton

    Google Scholar 

  • Mark P, Helfrich W (1962) Space-charge-limited currents in organic crystals. J Appl Phys 33:205

    Article  CAS  ADS  Google Scholar 

  • Mott NF (1969) Conduction in non-crystalline materials. Philos Mag 19:835

    Article  CAS  ADS  Google Scholar 

  • Murray CB, Kagan NC, Bawendi MG (2000) Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu Rev Mater Sci 30:545–610

    Article  CAS  ADS  Google Scholar 

  • Nelles J, Sendor D, Bertmer M et al (2007a) Surface chemistry of n-octane modified silicon nanoparticles analyzed by IR, 13C CPMAS NMR, EELS, and TGA. J Nanosci Nanotechnol 7:2818–2822

    Article  CAS  PubMed  Google Scholar 

  • Nelles J, Sendor D, Ebbers A et al (2007b) Functionalization of silicon nanoparticles via hydrosilylation with 1-alkenes. Colloid Polym Sci 285:729–736

    Article  CAS  Google Scholar 

  • Ng CY, Chen TP, Wong JI et al (2007) Performance of silicon nanocrystal non-volatile memory devices under various programming mechanisms. J Nanosci Nanotechnol 7:329–334

    CAS  PubMed  Google Scholar 

  • Oda S, Huang SY, Salem MA et al (2007) Charge storage and electron/light emission properties of silicon nanocrystals. Physica E 38:59–63

    Article  CAS  ADS  Google Scholar 

  • Rafiq MA, Tsuchiya Y, Mizuta H et al (2006) Hopping conduction in size-controlled Si nanocrystals. J Appl Phys 100:014303/1–014303/4

    Google Scholar 

  • Schmid G, Simon U (2005) Gold nanoparticles: assembly and electrical properties in 1–3 dimensions. Chem Commun 69:7–710

    Google Scholar 

  • Šimánek E (1981) The temperature dependence of the electrical resistivity of granular metals. Solid State Commun 40:1021–1023

    Article  Google Scholar 

  • Simon U, Sanders D, Jockel J et al (2002) Design strategies for multielectrode arrays applicable for high-throughput impedance spectroscopy on novel gas sensor materials. J Comb Chem 4:511–515

    Article  CAS  PubMed  Google Scholar 

  • Steimle RF, Muralidhar R, Rao R et al (2007) Silicon nanocrystal non-volatile memory for embedded memory scaling. Microelectron Reliab 47:585–592

    Article  CAS  Google Scholar 

  • Teo BK, Sun H (2007) Silicon-based low-dimensional nanomaterials and nanodevices. Chem Rev 107:1454–1532

    Article  CAS  PubMed  Google Scholar 

  • Rafiq MA, Tsuchiya Y, Mizuta H et al (2005) Charge injection and trapping in silicon nanocrystals. Appl Phys Lett 87:182101/1–182101/3

    Google Scholar 

  • Zhang J, Shklovskii BI (2004) Density of states and conductivity of a granular metal or an array of quantum dots. Phys Rev B 70:115317–115329

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This project is co-financed by the European Union and is financially supported by the state of North Rhine-Westphalia in Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Simon.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1534 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nelles, J., Sendor, D., Petrat, FM. et al. Electrical properties of surface functionalized silicon nanoparticles. J Nanopart Res 12, 1367–1375 (2010). https://doi.org/10.1007/s11051-009-9676-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-009-9676-0

Keywords

Navigation