Skip to main content
Log in

Drug delivery using novel nanoplexes against a Salmonella mouse infection model

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

A novel methodology for incorporating gentamicin into macromolecular complexes with anionic homo- and block copolymers via cooperative electrostatic interactions is described. Block copolymers of poly(ethylene oxide-b-sodium acrylate) (PEO-b-PAA +Na) or poly(ethylene oxide-b-sodium methacrylate) (PEO-b-PMA +Na) were blended with PAA Na+ and complexed with the polycationic antibiotic gentamicin. Gentamicin nanoplexes made with PEO-b-PMA +Na/PAA +Na (PMPG) and analogous nanoplexes with PEO-b-PAA +Na/PAA +Na (PAPG) had mean intensity average diameters of 120 and 90 nm, zeta potentials of −17 and −11 mv, and incorporated 26% and 23% by weight of gentamicin, respectively. Gentamicin release rates at physiological pH from nanoplexes were relatively slow. PAPG and PMPG as drug delivery systems for treating murine salmonellosis at doses similar to the free gentamicin experiments resulted in reduced numbers of viable bacteria in the liver and spleen. Polymeric nanoplexes developed by this methodology can potentially improve targeting of intracellular pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Azamian BR, Coleman KS, Davis JJ, Hanson N, Green ML (2002) Directly observed covalent coupling of quantum dots to single-wall carbon nanotubes. Chem Commun (Camb) 4:366–367. doi:10.1039/b110690b

    Article  Google Scholar 

  • Cordeiro C, Wiseman DJ, Lutwyche P, Uh M, Evans JC, Finlay BB, Webb MS (2000) Antibacterial efficacy of gentamicin encapsulated in pH-sensitive liposomes against an in vivo Salmonella enterica serovar typhimurium intracellular infection model. Antimicrob Agents Chemother 44:533–539. doi:10.1128/AAC.44.3.533-539.2000

    Article  CAS  PubMed  Google Scholar 

  • Davaran S, Rashidi MR, Pourabbas B, Dadashzadeh M, Haghshenas NM (2006) Adriamycin release from poly(lactide-co-glycolide)-polyethylene glycol nanoparticles: synthesis and in vitro characterization. Int J Nanomedicine 1:535–539. doi:10.2147/nano.2006.1.4.535

    Article  CAS  PubMed  Google Scholar 

  • Ellbogen MH, Olsen KM, Gentry-Nielsen MJ, Preheim LC (2003) Efficacy of liposome-encapsulated ciprofloxacin compared with ciprofloxacin and ceftriaxone in a rat model of pneumococcal pneumonia. J Antimicrob Chemother 51:83–91. doi:10.1093/jac/dkg024

    Article  CAS  PubMed  Google Scholar 

  • Galdiero F, Carratelli CR, Nuzzo I, Bentivoglio C, De Martino L, Folgore A, Galdiero M (1995) Enhanced cellular response in mice treated with a Brucella antigen-liposome mixture. FEMS Immunol Med Microbiol 10:235–243. doi:10.1111/j.1574-695X.1995.tb00038.x

    Article  CAS  PubMed  Google Scholar 

  • Gamazo C, Lecaroz MC, Prior S, Vitas AI, Campanero MA, Irache JM, Blanco-Prieto MJ (2006) Chemical biological factors in the control of Brucellosis. Curr Drug Deliv 3:359–365. doi:10.2174/156720106778559038

    Article  CAS  PubMed  Google Scholar 

  • Gaspar MM, Cruz A, Penha AF, Reymao J, Sousa AC, Eleuterio CV, Domingues SA, Fraga AG, Filho AL, Cruz ME, Pedrosa J (2008) Rifabutin encapsulated in liposomes exhibits increased therapeutic activity in a model of disseminated tuberculosis. Int J Antimicrob Agents 31:37–45. doi:10.1016/j.ijantimicag.2007.08.008

    Article  CAS  PubMed  Google Scholar 

  • Gupta K, Ganguli M, Pasha S, Maiti S (2006) Nanoparticle formation from poly(acrylic acid) oppositely charged peptides. Biophys Chem 119:303–306. doi:10.1016/j.bpc.2005.09.013

    Article  CAS  PubMed  Google Scholar 

  • Hou SCEL, Taton D, Gnanou Y (2003) Synthesis of water-soluble star-block dendrimer-like copolymers based on poly(ethylene oxide) -poly(acrylic acid). Macromolecules 36:3874–3881. doi:10.1021/ma021565d

    Article  CAS  ADS  Google Scholar 

  • Lecaroz C, Blanco-Prieto MJ, Burrell MA, Gamazo C (2006a) Intracellular killing of Brucella melitensis in human macrophages with microsphere-encapsulated gentamicin. J Antimicrob Chemother 58:549–556. doi:10.1093/jac/dkl257

    Article  CAS  PubMed  Google Scholar 

  • Lecaroz C, Campanero MA, Gamazo C, Blanco-Prieto MJ (2006b) Determination of gentamicin in different matrices by a new sensitive high-performance liquid chromatography-mass spectrometric method. J Antimicrob Chemother 58:557–563. doi:10.1093/jac/dkl258

    Article  CAS  PubMed  Google Scholar 

  • Lecaroz C, Gamazo C, Blanco-Prieto MJ (2006c) Nanocarriers with gentamicin to treat intracellular pathogens. J Nanosci Nanotechnol 6:3296–3302. doi:10.1166/jnn.2006.478

    Article  CAS  PubMed  Google Scholar 

  • Lecaroz MC, Blanco-Prieto MJ, Campanero MA, Salman H, Gamazo C (2007) Poly(DL-lactide-co-glycolide) particles containing gentamicin: pharmacokinetics, pharmacodynamics in Brucella melitensis-infected mice. Antimicrob Agents Chemother 51:1185–1190. doi:10.1128/AAC.00809-06

    Article  CAS  PubMed  Google Scholar 

  • Lutwyche P, Cordeiro C, Wiseman DJ, St-Louis M, Uh M, Hope MJ, Webb MS, Finlay BB (1998) Intracellular delivery and antibacterial activity of gentamicin encapsulated in pH-sensitive liposomes. Antimicrob Agents Chemother 42(10):2511–2520

    CAS  PubMed  Google Scholar 

  • Monack DM, Bouley DM, Falkow S (2004) Salmonella typhimurium persists within macrophages in the mesenteric lymph nodes of chronically infected Nramp1+/+ mice can be reactivated by IFN-gamma neutralization. J Exp Med 199:231–241. doi:10.1084/jem.20031319

    Article  CAS  PubMed  Google Scholar 

  • Oskay-Oezcelik G, Koensgen D, Hindenburg HJ, Klare P, Schmalfeldt B, Lichtenegger W, Chekerov R, Al-Batran SE, Neumann U, Sehouli J (2008) Biweekly pegylated liposomal doxorubicin as second-line treatment in patients with relapsed ovarian cancer after failure of platinum and paclitaxel: results from a multi-center phase II study of the NOGGO. Anticancer Res 28:1329–1334

    CAS  PubMed  Google Scholar 

  • Page-Clisson ME, Pinto-Alphary H, Chachaty E, Couvreur P, Remont A (1998) Drug targeting by polyalkylcyanoacrylate nanoparticles is not efficient against persistent Salmonella. Pharm Res 15:544–549. doi:10.1023/A:1011921608964

    Article  CAS  PubMed  Google Scholar 

  • Pan J, Zhao M, Liu Y, Wang B, Mi L, Yang L (2008) Development of a new poly(ethylene glycol)-graft-poly(d,l-lactic acid) as potential drug carriers. J Biomed Mater Res A 89(A) 160–167

    Google Scholar 

  • Pandey R, Khuller GK (2007) Nanoparticle-based oral drug delivery system for an injectable antibiotic—streptomycin. Evaluation in a murine tuberculosis model. Chemotherapy 53:437–441. doi:10.1159/000110009

    Article  CAS  PubMed  Google Scholar 

  • Prior S, Ger B, Irache JM, Gamazo C (2005) Gentamicin-loaded microspheres for treatment of experimental Brucella abortus infection in mice. J Antimicrob Chemother 55:1032–1036. doi:10.1093/jac/dki144

    Article  CAS  PubMed  Google Scholar 

  • Ristuccia AM, Cunha BA (1982) The aminoglycosides. Med Clin North Am 66:303–312

    CAS  PubMed  Google Scholar 

  • Rudt S, Muller RH (1993) In vitro phagocytosis assay of nano-microparticles by chemiluminescense III: Uptake of differently sized surface-modified particles, its correlation to particle properties, in vivo distribution. Eur J Pharm Sci 1:31–39. doi:10.1016/0928-0987(93)90015-3

    Article  Google Scholar 

  • Seleem MN, Boyle SM, Sriranganathan N (2008) Brucella: a pathogen without classic virulence genes. Vet Microbiol 129:1–14. doi:10.1016/j.vetmic.2007.11.023

    Article  CAS  PubMed  Google Scholar 

  • Smyth Templeton N (2003) Cationic liposomes as in vivo delivery vehicles. Curr Med Chem 10:1279–1287. doi:10.2174/0929867033457421

    Article  PubMed  Google Scholar 

  • Steinberg BE, Grinstein S (2008) Pathogen destruction versus intracellular survival: the role of lipids as phagosomal fate determinants. J Clin Invest 118:2002–2011. doi:10.1172/JCI35433

    Article  CAS  PubMed  Google Scholar 

  • Sukupolvi S, Edelstein A, Rhen M, Normark SJ, Pfeifer JD (1997) Development of a murine model of chronic Salmonella infection. Infect Immun 65:838–842

    CAS  PubMed  Google Scholar 

  • Vonarbourg A, Passirani C, Saulnier P, Benoit JP (2006) Parameters influencing the stealthiness of colloidal drug delivery systems. Biomaterials 27:4356–4373. doi:10.1016/j.biomaterials.2006.03.039

    Article  CAS  PubMed  Google Scholar 

  • Yang T, Cui FD, Choi MK, Cho JW, Chung SJ, Shim CK, Kim DD (2007a) Enhanced solubility-stability of PEGylated liposomal paclitaxel: in vitro–in vivo evaluation. Int J Pharm 338:317–326. doi:10.1016/j.ijpharm.2007.02.011

    Article  CAS  PubMed  Google Scholar 

  • Yang T, Cui FD, Choi MK, Lin H, Chung SJ, Shim CK, Kim DD (2007b) Liposome formulation of paclitaxel with enhanced solubility and stability. Drug Deliv 14:301–308. doi:10.1080/10717540601098799

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to NSF DMR-0312046 and to Virginia Tech’s Institute for Critical Technologies and Applied Sciences (ICTAS) for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Sriranganathan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ranjan, A., Pothayee, N., Seleem, M. et al. Drug delivery using novel nanoplexes against a Salmonella mouse infection model. J Nanopart Res 12, 905–914 (2010). https://doi.org/10.1007/s11051-009-9641-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-009-9641-y

Keywords

Navigation