Skip to main content
Log in

Nanoparticulate-induced toxicity and related mechanism in vitro and in vivo

  • Nanoparticles and Occupational Health
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In urban areas, the quantity of exhaust particles from vehicle emissions is tremendous and has been regarded as the main contributor to particulate matter (PM) pollution. Recently, the nano-sized PM on public health has begun to raise the attention. The increased toxicity of nanoparticulate can be largely explained by their small size, high airborne concentration, extensive surface area and high content of organic carbon and transition metals. We have attempted to address the toxicity of nano sized-particlulate matter by comparing various particulates including micro-SiO2 (mSiO2), nano-SiO2 (nSiO2), micro-TiO2 (mTiO2), and nano-TiO2 (nTiO2) in RAW264.7 cells and in vivo. The cell viability of all particulates decreased dose dependently. 24-h incubation with nSiO2 demonstrated apoptosis in RAW264.7 using Annexin-V binding immunofluorescent microscopy, but not in any other particulates. In vivo, cytotoxicity of nanosized was higher than micro-sized particulates. As higher the concentration of particulates, the more pulmonary injury and neutrophilic infiltration were observed in nano-sized than micro-sized particulates, respectively. Particularly, 5.0 mg/kg of mTiO2 never shows any increase of neutrophile even with high cellularity of total cells and macrophages. From these results, we suggested that particulate-induced respiratory toxicity be influenced by component, size, and dose of particulates including the characteristic nature of the target cells in vitro and in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Afaq F, Abidi P, Matin R, Rahman O (1998) Cytotoxicity, prooxidant effects and antioxidant depletion in rat lung alveolar macrophages exposed to ultra-fine titanium dioxide. J Appl Toxicol 18:307–312. doi:10.1002/(SICI)1099-1263(1998090)18:5<307::AID-JAT508>3.0.CO;2-K

    Article  PubMed  CAS  Google Scholar 

  • Baggs RB, Fern J, Oberdörster G (1997) Regression of pulmonary lesions produced by inhaled titanium dioxide in rats. Vet Pathol 34:592–597

    Article  PubMed  CAS  Google Scholar 

  • Barkett M, Gilmore TD (1999) Control of apoptosis by Rel/NF-kappaB transcription factors. Oncogene 18:6910–6924. doi:10.1038/sj.onc.1203238

    Article  PubMed  CAS  Google Scholar 

  • Bayram H, Ito K, Issa R, Ito M, Sukkar M, Chung KF (2006) Regulation of human lung epithelial cell numbers by diesel exhaust particles. Eur Respir J 27:705–713. doi:10.1183/09031936.06.00012805

    Article  PubMed  CAS  Google Scholar 

  • Bowden DH (1987) Macrophages, dust, and pulmonary diseases. Exp Lung Res 12:89–107. doi:10.3109/01902148709062834

    Article  PubMed  ADS  CAS  Google Scholar 

  • Graham W (1992) Silicosis. Clin Chest Med 13:253–267

    PubMed  CAS  Google Scholar 

  • ILSI Risk Science Institute (2000) The relevance of the rat lung response to particle overload for human risk assessment: a workshop consensus report. ILSI Risk Science Institute Workshop Participants. Inhal Toxicol 12:1–17

    Google Scholar 

  • Lakatos HF, Burgess HA, Thatcher TH, Redonnet MR, Hernady E, Williams JP et al (2006) Oropharyngeal aspiration of a silica suspension produces a superior model of silicosis in the mouse when compared to intratracheal instillation. Exp Lung Res 32:181–199. doi:10.1080/01902140600817465

    Article  PubMed  CAS  Google Scholar 

  • Li N, Wang M, Oberley TD, Sempf JM, Nel AE (2002) Comparison of the pro-oxidative and proinflammatory effects of organic diesel exhaust particle chemicals in bronchial epithelial cells and macrophages. J Immunol 169:4531–4541

    PubMed  CAS  Google Scholar 

  • Lindenschmidt RC, Driscoll KE, Perkins MA, Hiqqins JM, Maurer JK, Belfiore KA (1990) The comparison of a fibrogenic and two non-fibrogenic dusts by bronchoalveolar lavage. Toxicol Appl Pharmacol 102:268–281. doi:10.1016/0041-008X(90)90026-Q

    Article  PubMed  CAS  Google Scholar 

  • Maynard AD, Aitken RJ, Butz T, Colvin V, Donaldson K, Oberdörster G et al (2006) Safe handling of nanotechnology. Nature 444:267–269. doi:10.1038/444267a

    Article  PubMed  ADS  CAS  Google Scholar 

  • Oberdörster G, Ferin J, Gelein R, Soderholm SC, Finkelstein J (1992) Role of the alveolar macrophages in lung injury: studies with ultrafine particles. Environ Health Perspect 97:193–199. doi:10.2307/3431353

    Article  PubMed  Google Scholar 

  • Oberdörster G, Utell MJ (2002) Ultrafine particles in the urban air: to the respiratory tract-and beyond? Environ Health Perspect 110:A440–A441

    PubMed  Google Scholar 

  • Obot CJ, Morandi MT, Hamilton RF, Holian A (2004) A comparison of murine and human alveolar macrophage responses to urban particulate matter. Inhal Toxicol 16:69–76. doi:10.1080/08958370490265059

    Article  PubMed  CAS  Google Scholar 

  • Ovrevik J, Schwarze PE (2006) Chemical composition and not only total surface area is important for the effects of ultrafine particles. Mutat Res 594:201–202. doi:10.1016/j.mrfmmm.2005.10.002

    PubMed  CAS  Google Scholar 

  • Rahman Q, Lohani M, Dopp E, Pemsel H, Jonas L, Weiss DG et al (2002) Evidence that ultrafine titanium dioxide induces micronuclei and apoptosis in Syrian hamster embryo fibroblasts. Environ Health Perspect 110:797–800

    PubMed  CAS  Google Scholar 

  • Rimal B, Greenberg AK, Rom WN (2005) Basic pathogenetic mechanisms in silicosis: current understanding. Curr Opin Pulm Med 11:169–173. doi:10.1097/01.mcp. 0000152998.11335.24

    Article  PubMed  Google Scholar 

  • Samet JM, Dominici F, Curriero FC, Coursac I, Zeqer SL (2000) Fine particulate air pollution and mortality in 20 U.S. cities, 1987–1994. N Engl J Med 343:1742–1749. doi:10.1056/NEJM200012143432401

    Article  PubMed  CAS  Google Scholar 

  • Santarelli L, Recchioni R, Moroni F, Marcheselli F, Governa M (2004) Crystalline silica induces apoptosis in human endothelial cells in vitro. Cell Biol Toxicol 20:97–108. doi:10.1023/B:CBTO.0000027935.45070.75

    Article  PubMed  CAS  Google Scholar 

  • Sayes CM, Reed KL, Warheit DB (2007) Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles. Toxicol Sci 97:163–180. doi:10.1093/toxsci/kfm018

    Article  PubMed  CAS  Google Scholar 

  • Warheit DB, Webb TR, Reed KL, Frerichs S, Saves CM (2007) Pulmonary toxicity study in rats with three forms of ultrafine-TiO2 particles: differential responses related to surface properties. Toxicology 230:90–104. doi:10.1016/j.tox.2006.11.002

    Article  PubMed  CAS  Google Scholar 

  • Yamadori I, Ohsumi S, Taguchi K (1986) Titanium dioxide deposition and adenocarcinoma of the lung. Acta Pathol Jpn 36:783–790

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by the CEFV (Center for Environmentally Friendly Vehicle) of Eco-STAR project from MOE (Ministry of Environment), Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Lim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, H.W., Ahn, EK., Jee, B.K. et al. Nanoparticulate-induced toxicity and related mechanism in vitro and in vivo. J Nanopart Res 11, 55–65 (2009). https://doi.org/10.1007/s11051-008-9447-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-008-9447-3

Keywords

Navigation