Skip to main content
Log in

Direct assembly of nanoparticles for large-scale fabrication of nanodevices and structures

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Non-uniform electric fields are utilized to direct the large scale assembly of colloidal nanoparticles in nanoscale structures over large areas. Using micro- and nanoscale templates, various nanoparticles can be directly assembled into parallel wires, cross-wires, and many other complex structures. The assembly process is controlled by electric field, time, and geometric design of templates. The results show that single nanoparticle wires as small as 10 nm wide and 100,000 nm long as well as other nanoparticle structures can be fabricated using electrophoresis over a large area. In addition, the directed assembly of polymeric and conductive nanoparticle nanowires and networks has been demonstrated using dielectrophoresis. The nanoparticle wires can be further oriented along the direction of an externally introduced hydrodynamic flow. The presented technique is a promising approach for large scale manufacturing of nanoscale devices for many applications including biosensors and nanoelectronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amlani I, Rawlett AM, Nagahara LA, Tsui RK (2002) An approach to transport measurements of electronic molecules. Appl Phys Lett 80:2761

    Article  CAS  Google Scholar 

  • Bhatt KH, Velev OD (2004) Control and modeling of the dielectrophoretic assembly of on-chip nanoparticle wires. Langmuir 20:467–476

    Article  CAS  Google Scholar 

  • Cheng C, Gonela RK, Gu Q, Haynie DT (2005) Self-assembly of metallic nanowires from aqueous solution. Nano Lett 5:175–178

    Article  CAS  Google Scholar 

  • Cui Y, Bjork MT, Liddle JA, Sonnichsen C, Boussert B, Alivisatos AP (2004) Integration of colloidal nanocrystals into lithographically patterned devices. Nano Lett 4:1093–1098

    Article  CAS  Google Scholar 

  • Green NG, Morgan H (1999) Dielectrophoresis of submicrometer latex spheres. 1. experimental results. J Phys Chem B 103:41–50

    Article  CAS  Google Scholar 

  • Hayward RC, Saville DA Aksay IA (2000) Electrophoretic assembly of colloidal crystals with optically tunable micropatterns. Nature 404:56–58

    Article  CAS  Google Scholar 

  • Himmelhaus M, Takei H (2002) Self-assembly of polystyrene nano particles into patterns of random-close-packed monolayers via chemically induced adsorption. Phys Chem Chem Phys 4:496–506

    Article  CAS  Google Scholar 

  • Huang Y, Duan X, Wei Q, Lieber CM (2001) Directed assembly of one-dimensional nanostructures into functional networks. Science 291:630–633

    Article  CAS  Google Scholar 

  • Jacobs HO, Whitesides GM (2001) Submicrometer patterning of charge in thin-film electrets. Science 291:1763–1766

    Article  CAS  Google Scholar 

  • Jones TB (1995) Electromechanics of particles. Cambridge University Press, Cambridge

    Google Scholar 

  • Kumacheva E, Golding RK, Allard M, Sargent EH (2002) Colloid crystal growth on mesoscopically patterned surfaces: effect of confinement. Adv Mater 14:221–224

    Article  CAS  Google Scholar 

  • Lin H (2001) Chemical and particulate contamination removal from patterned and nonpatterned semiconductor surfaces using oscillating flow. Dissertation, Clarkson University

  • Lumsdon SO, Kaler EW, Williams JP, Velev OD (2003) Dielectrophoretic assembly of oriented and switchable two-dimensional photonic crystals. Appl Phys Lett 82:949

    Article  CAS  Google Scholar 

  • Makaram P, Somu S, Xiong X, Busnaina A, Jung Y J, McGurer N (2007) Scalable nanotemplate assisted directed assembly of single walled carbon nanotubes for nanoscale devices. Appl Phys Lett 90:243108

    Article  Google Scholar 

  • Maury P, Escalante M, Reinhoudt DN, Huskens J (2005) Directed Assembly of Nanoparticles onto Polymer-Imprinted or Chemically Patterned Templates Fabricated by Nanoimprint Lithography. Adv Mater 17:2718–2723

    Article  CAS  Google Scholar 

  • O’Konski CT (1960) Electric properties of macromolecules. V. Theory of ionic polarization in polyelectrolytes. J Phys Chem 64:605–619

    Article  CAS  Google Scholar 

  • Ozin GA, Yang SM (2001) The race for the photonic chip: colloidal crystal assembly in silicon wafers. Adv Funct Mater 11:95–104

    Article  CAS  Google Scholar 

  • Ozturk B, Talukdar I, Flanders BN (2005) The directed-assembly of CdS interconnects between targeted points in a circuit. Appl Phys Lett 86:183105

    Article  Google Scholar 

  • Partridge JG, Brown SA, Dunbar ADF, Reichel R, Kaufmann M, Siegert C, Scott S, Blaikie RJ (2004) Templated-assembly of conducting antimony cluster wires. Nanotechnology 15:1382–1387

    Article  CAS  Google Scholar 

  • Ramos A, Morgan H, Green NG, Castellanos A (1998) Ac electrokinetics: a review of forces in microelectrode structures. J Phys D Appl Phys 31:2338–2353

    Article  CAS  Google Scholar 

  • Rao SG, Huang L, Setyawan W, Hong S (2003) Nanotube electronics: Large-scale assembly of carbon nanotubes. Nature 425:36–37

    Article  CAS  Google Scholar 

  • Solomentsev Y, Böhmer M, anderson JL (1997) Particle clustering and pattern formation DURING electrophoretic deposition: a hydrodynamic model. Langmuir 13:6058–6068

    Article  CAS  Google Scholar 

  • Trau M, Saville DA, Aksay IA (1997) Assembly of colloidal crystals at electrode interfaces. Langmuir 13:6375–6381

    Article  CAS  Google Scholar 

  • Tsai D-H, Kim SH, Corrigan TD, Phaneuf RJ, Zachariah MR (2005) Electrostatic-directed deposition of nanoparticles on a field generating substrate. Nanotechnology 16:1856–1862

    Article  CAS  Google Scholar 

  • Tuukkanen S, Toppari JJ, Kuzyk A, Hirviniemi L, Hytönen VP, Ihalainen T, Törmä P (2006) Carbon nanotubes as electrodes for dielectrophoresis of DNA. Nano Lett 6:1339–1343

    Article  CAS  Google Scholar 

  • Warner MG, Hutchison JE (2003) Linear assemblies of nanoparticles electrostatically organized on DNA scaffolds. Nat Mater 2:272–276

    Article  CAS  Google Scholar 

  • Xiong X (2006) Electric field assisted directed assembly of nanoparticles and carbon nanotubes using templates. Dissertation, Northeastern University

  • Xiong X, Busnaina A, Selvarasah S, Somu S, Wei M, Mead J, Chen C, Aceros J, Makaram P, Dokmeci M (2007) Directed assembly of gold nanoparticle nanowires and networks for nanodevices. Appl Phys Lett 91:063101

    Article  Google Scholar 

  • Xiong X, Makaram P, Bakhtari K, Somu S, Busnaina A, Small J, McGruer N, Park J (2006a) Directed assembly of nanoelements using electrostatically addressable templates. Mater Res Soc Symp Proc 901E, 0901-Ra04-01.1

  • Xiong X, Makaram P, Busnaina A, Bakhtari K, Somu S, McGruer N, Park J (2006b) Large scale directed assembly of nanoparticles using nanotrench templates. Appl Phys Lett 89:193108

    Article  Google Scholar 

  • Yin Y, Lu Y, Gates B, Xia Y (2001) Template-Assisted Self-Assembly: A Practical Route to Complex Aggregates of Monodispersed Colloids with Well-Defined Sizes, Shapes, and Structures. J Am Chem Soc 123:8718–8729

    Article  CAS  Google Scholar 

  • Zhang Y, Chang A, Cao J, Wang Q, Kim W, Li Y, Morris N, Yenilmez E, Kong J, Dai H (2001) Electric–Field-Directed growth of aligned single-walled carbon nanotubes. Appl Phys Lett 79:3155–3157

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation Nanoscale Science and Engineering Center (NSEC) for High-rate Nanomanufacturing (NSF grant- 0425826) and the Keck foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Busnaina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiong, X., Busnaina, A. Direct assembly of nanoparticles for large-scale fabrication of nanodevices and structures. J Nanopart Res 10, 947–954 (2008). https://doi.org/10.1007/s11051-007-9351-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-007-9351-2

Keywords

Navigation