Skip to main content
Log in

Liposome encapsulation of fluorescent nanoparticles: Quantum dots and silica nanoparticles

  • Brief communication
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Quantum dots (QDs) and silica nanoparticles (SNs) are relatively new classes of fluorescent probes that overcome the limitations encountered by organic fluorophores in bioassay and biological imaging applications. We encapsulated QDs and SNs in liposomes and separated nanoparticle-loaded liposomes from unencapsulated nanoparticles by size exclusion chromatography. Fluorescence correlation spectroscopy was used to measure the average number of nanoparticles inside each liposome. Results indicated that nanoparticle-loaded liposomes were formed and separated from unencapsulated nanoparticles by using a Sepharose gel. As expected, fluorescence self-quenching of nanoparticles inside liposomes was not observed. Each liposome encapsulated an average of three QDs. These studies demonstrated that nanoparticles could be successfully encapsulated into liposomes and provided a methodology to quantify the number of nanoparticles inside each liposome by fluorescence correlation spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahn-Yoon S., DeCory T.R., Baeumner A.J., Durst R.A., (2003). Ganglioside-liposome immunoassay for the ultrasensitive detection of cholera toxin. Anal. Chem. 75:2256–2261

    Article  CAS  Google Scholar 

  • Alivisatos A.P., (1996). Semiconductor clusters, nanocrystals, and quantum dots. Science 271:933–937

    Article  CAS  Google Scholar 

  • Baeumner A. J., Pretz J., Fang S., (2004). A universal nucleic acid sequence biosensor with nanomolar detection limits. Anal. Chem. 76:888–894

    Article  CAS  Google Scholar 

  • Barber K., Mala R. R., Lambert M. P., Qiu R. Z., MacDonald R. C., Klein W. L., (1996). Delivery of membrane-impermeant fluorescent probes into living neural cell populations by lipotransfer. Neurosci. Lett. 207:17–20

    Article  CAS  Google Scholar 

  • Chan W. C., Nie S., (1998). Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281:2016–2018

    Article  CAS  Google Scholar 

  • Diederichs J. E., (1996). Plasma protein adsorption patterns on liposomes: establishment of analytical procedure. Electrophoresis 17:607–611

    Article  CAS  Google Scholar 

  • Esch M. B., Baeumner A. J., Durst R. A., (2001). Detection of Cryptosporidium parvum using oligonucleotide-tagged liposomes in a competitive assay format. Anal. Chem. 73:3162–3167

    Article  CAS  Google Scholar 

  • Goldman E. R., Anderson G. P., Tran P. T., Mattoussi H., Charles P. T., Mauro J. M., (2002). Conjugation of luminescent quantum dots with antibodies using an engineered adaptor protein to provide new reagents for fluoroimmunoassays. Anal. Chem. 74:841–847

    Article  CAS  Google Scholar 

  • Ho J. A., Hsu H. W., Huang M. R., (2004). Liposome-based microcapillary immunosensor for detection of Escherichia coli O157:H7. Anal. Biochem. 330:342–349

    Article  CAS  Google Scholar 

  • Kim S. A., Schwille P., (2003). Intracellular applications of fluorescence correlation spectroscopy: prospects for neuroscience. Curr. Opin. Neurobiol. 13:583–590

    Article  CAS  Google Scholar 

  • Larson D. R., Heikal A., Ow H., Srivastava M., Wiesner U., Baird B., Webb W. W., (2003a). Development of fluorescent silica nanoparticles for biological imaging. Biophys. J. 84:586A–586A

    Google Scholar 

  • Larson D. R., Zipfel W. R., Williams R. M., Clark S. W., Bruchez M. P., Wise F. W., Webb W. W., (2003b). Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 300:1434–1436

    Article  CAS  Google Scholar 

  • Levin M. K., Carson J. H., (2004). Fluorescence correlation spectroscopy and quantitative cell biology. Differentiation 72:1–10

    Article  CAS  Google Scholar 

  • Maiti S., Haupts U., Webb W. W., (1997). Fluorescence correlation spectroscopy: diagnostics for sparse molecules. Proc. Natl. Acad. Sci. USA 94:11753–11757

    Article  CAS  Google Scholar 

  • Mattoussi H., Radzilowski L. H., Dabbousi B. O., Thomas E. L., Bawendi M. G., Rubner M. F., (1998). Electroluminescence from heterostructures of poly(phenylene vinylene) and inorganic CdSe nanocrystals. J. Appl. Phys. 83:7965–7974

    Article  CAS  Google Scholar 

  • Muller W. J., Zen K., Fisher A. B., Shuman H., (1995). Pathways for Uptake of Fluorescently Labeled Liposomes by Alveolar Type-Ii Cells in Culture. Am. J. Physiol. Lung Cell Mol. Physiol. 13:L11–L19

    Google Scholar 

  • Park S., Durst R. A., (2000). Immunoliposome sandwich assay for the detection of Escherichia coli O157:H7. Anal. Biochem. 280:151–158

    Article  CAS  Google Scholar 

  • Reynolds J. A., Nozaki Y., Tanford C., (1983). Gel-exclusion chromatography on S1000 Sephacryl: application to phospholipid vesicles. Anal. Biochem. 130:471–474

    Article  CAS  Google Scholar 

  • Rigler R., (1995). Fluorescence correlations, single molecule detection and large number screening. Applications in biotechnology. J Biotechnol 41:177–186

    CAS  Google Scholar 

  • Rodriguez-Viejo J., Mattoussi H., Heine J. R., Kuno M. K., Michel J., Bawendi M. G., Jensen K. F., (2000). Evidence of photo- and electrodarkening of (CdSe)ZnS quantum dot composites. J. Appl. Phys. 87:8526–8534

    Article  CAS  Google Scholar 

  • Schrock E., du Manoir S., Veldman T., Schoell B., Wienberg J., Ferguson-Smith M. A., Ning Y., Ledbetter D. H., Bar-Am I., Soenksen D., Garini Y., Ried T., (1996). Multicolor spectral karyotyping of human chromosomes. Science 273:494–497

    Article  CAS  Google Scholar 

  • Siebert S. T. A., Reeves S. G., Durst R. A., (1993). Liposome immunomigration field assay device for Alachlor determination. Anal. Chim. Acta 282:297–305

    Article  CAS  Google Scholar 

  • Stober, W., A. Fink & E. Bohn, 1968. Controlled growth of monodisperse silica spheres in micron size range. J. Colloid Interf. Sci. 26, 62.

    Google Scholar 

  • Struck D. K., Pagano R. E., (1980). Insertion of fluorescent phospholipids into the plasma-membrane of a mammalian-cell. J. Biol. Chem. 255:5404–5410

    CAS  Google Scholar 

  • Trau D., Yang W., Seydack M., Caruso F., Yu N. T., Renneberg R., (2002). Nanoencapsulated microcrystalline particles for superamplified biochemical assays. Anal. Chem. 74:5480–5486

    Article  CAS  Google Scholar 

  • Yang W., Zhang C. G., Qu H. Y., Yang H. H., Xu J. G., (2004). Novel fluorescent silica nanoparticle probe for ultrasensitive immunoassays. Anal. Chim. Acta 503:163–169

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard A. Durst.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, CS., Yao, J. & Durst, R.A. Liposome encapsulation of fluorescent nanoparticles: Quantum dots and silica nanoparticles. J Nanopart Res 8, 1033–1038 (2006). https://doi.org/10.1007/s11051-006-9142-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-006-9142-1

Keywords

Navigation