Skip to main content
Log in

Effect of silver addition on the formation and deposition of titania nanoparticles produced by liquid flame spray

  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In this study, liquid flame spray (LFS) was used to produce titania, silver and silver–titania deposits of nanoparticles. Titanium(IV)ethoxide (TEOT) and silver nitrate in ethanol solutions were used as precursors and sprayed into turbulent hydrogen–oxygen flame. Production rates of 1.5–40 mg/min of titania were used with silver additions of 1, 2, 4, and 8 wt% compared to titania. Nanoparticle deposits were collected by thermophoretic sampling at six different axial distances from the flame torch head: 3, 5, 10, 12, 15, and 20 cm, of which the all but the last one occurred inside the flame. The deposit samples were analysed by TEM and SAED analysis. The powder samples of the particles were also collected by electric precipitator to XPS and specific surface area analysis. Particle size and effective density after the flame in the aerosol were analysed with SMPS and ELPI. The results from the previous studies i.e. controlling the particle size by setting the production rates of the particles were seen to apply also for this binary system. Characterisation of the deposits showed that when the substrate is inserted into the flame, in the beginning of the flame the deposit is formed by gas phase deposition whereas further down the flame the particles are first formed in the gas phase and then deposited. The location of the transition from gas phase deposition to gas phase nucleation prior to deposition depends on chemical/physical properties (e.g. thermodynamics and gas phase interactions) of the precursor, precursor concentration in the flame and also flame temperature profile. Therefore, the deposit collection distance from the burner also affected the collected particle size and degree of agglomeration. The two component deposits were produced in two different ways: one-step method mixing both precursors in the same solute, and two-step method spraying each precursor separately. The particle morphology differs between these two cases. In one-step method the primary (d TEM) and agglomerate particle size (d SMPS) decreased with the amount of silver addition, verifying the fact that when present, the silver has a clear effect on the titania nanoparticle formation and growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akhtar M.K., Pratsinis S.E., Mastrangelo S.V.R. (1992) Dopants in vapour phase synthesis of titania powders. J. Am. Ceram. Soc. 75:3408

    Article  CAS  Google Scholar 

  • Backman U., Tapper U., Jokiniemi J.K. (2004) An aerosol method to synthesize supported metal catalyst nanopraticles. Synth. Met. 142:169

    Article  CAS  Google Scholar 

  • Choy K.L., 2003. Chemical vapour deposition of coatings 200. Prog. Mater. Sci. 48, 57

    Google Scholar 

  • CRC Handbook of Chemistry and Physics 60th edn., 1979. CRC Press, Boca Raton

  • Ehrman S.H., Friedlander S.K. (1999) Bimodal distributions of two component metal oxide aerosols. Aerosol Sci. Technol. 30:259

    Article  CAS  Google Scholar 

  • Gross K.A., Tikkanen J., Keskinen J., Pitkänen V., Eerola M., Siikamäki R., Rajala M. (1999) Liquid based flame spraying on hot glass surfaces. J. Thermal Spray Technol. 8:583

    Article  CAS  Google Scholar 

  • Ha H.K., Yoshimoto M., Koinuma H., Moon B.K., Ishiwara H. (1996) Open air plasma chemical vapor deposition of highly dielectric amorphous TiO2 films. Appl. Phys. Lett. 68:2965

    Article  CAS  Google Scholar 

  • He C., Yu Y., Hu X., Larbot X. (2002) Influence of silver doping on the photocatalytic activity of titania films. Appl. Surf. Sci. 200:239

    Article  CAS  Google Scholar 

  • He C., Yu Y., Hu X., Larbot A. (2003) Effect of silver doping on the phase transformation and grain growth of sol-gel titania powder. J. Eur. Ceram. Soc. 23:1457

    Article  CAS  Google Scholar 

  • Hung C.H., Miquel P.F., Katz J.L. (1996) Formation of mixed oxide powders in flames: part II SiO2–GeO2 and Al2O3–TiO2. J. Mater. Res. 7:1879

    Google Scholar 

  • Jain S., Atanasova P., Kodas T.T., Hampden-Smith M. (1996) In situ formation of coated and composite palladium particles via spray pyrolysis. J. Electrochem. Soc. 11:3762

    Article  Google Scholar 

  • Johannessen T., Pratsinis S.E., Livbjerg H. (2001) Computational analysis of coagulation and coalescence in the flame synthesis of titania particles. Powder Technol. 118:242

    Article  CAS  Google Scholar 

  • Johannessen T., Koutsopoulos S. (2002) One step synthesis of an active Pt/TiO2 catalyst for SO2 oxidation – a possible alternative to traditional methods for parallel screening. J. Catal. 205:404

    Article  CAS  Google Scholar 

  • Kasper G. (1982) Dynamics and measurement of smokes I – size characterization of nonspherical particles. Aerosol Sci. Technol. 1:187

    Google Scholar 

  • Kelly W.P., McMurry P.H. (1992) Measurement of particle density by inertial classification of differential mobility analyser-generated monodisperse aerosol. Aerosol Sci. Technol. 17:199

    CAS  Google Scholar 

  • Keskinen H., Mäkelä J.M., Vippola M., Nurminen M., Liimatainen J.K., Lepistö T., Keskinen J. (2004a) Generation of silver/palladium nanoparticles by liquid flame spray. J. Mat. Res. 19:1544

    Article  CAS  Google Scholar 

  • Keskinen H., Moravec P., Smolík J., Levdansky V.V., Mäkelä J.M., Keskinen J. (2004b) Preparation of ZrO2 fine particles by CVD process: thermal decomposition of zirconium tert-butoxide vapour. J. Mat. Sci. Lett. 39:4923

    CAS  Google Scholar 

  • Keskinen H., MäkeläJ.M., Hellsten S., Aromaa M., Levänen E., Mäntylä T. (2005) Generation of titania nanoparticles by liquid flame spray for photocatalytic applications. Electrochem. Soc. Proc. 2005-09:491

    CAS  Google Scholar 

  • Koch M., Lödding H., Mölter M., Munzinger F. (1988) Verdnüngssystem für die messung hochkonzentrierter aerosol mit optischen partikelzählern. Staub-Reinhaltung der Luft 48:341

    CAS  Google Scholar 

  • Kodas T.T., Hampden-Smith M.J. (1999) Aerosol Processing of Materials. Vol.10 and 12. Wiley-VCH, New York

    Google Scholar 

  • Mädler L., Kammler H.K., Mueller R., Pratsinis S.E. (2002) Controlled synthesis of nanostructured particles by flame spray pyrolysis. J. Aerosol Sci. 33:369

    Article  Google Scholar 

  • Mädler L., Stark W., Pratsinis S.E. (2003) Simultaneous deposition of gold nanoparticles during flame synthesis of titania and silica. J. Mater. Res. 18:115

    Google Scholar 

  • Mäkelä J.M., Keskinen H., Forsblom T., Keskinen J. (2004) Generation of metal and metal oxide nanoparticles by liquid flame spray process. J. Mater. Sci. 8:2783

    Article  Google Scholar 

  • Mäkelä J.M., Hellstén S., Silvonen J., Vippola M., Levänen E., Mäntylä T. (2006) Collection of liquid flame spray TiO2 nanoparticles on stainless steel surface. Mater. Lett. 60:530

    Article  CAS  Google Scholar 

  • Miquel P.F., Katz J.L. (1994) Formation and characterization of nanostructured V-P-O particles in flames: a new route for formation of catalysts. J. Mater. Res. 9:746

    CAS  Google Scholar 

  • Moody E.G., Collins L.R. (2003) Effect of mixing in the nucleation and growth of titania particles. Aerosol Sci. Technol. 37:403

    Article  CAS  Google Scholar 

  • Mueller R., Mädler L., Pratsinis S.E. (2003) Nanoparticle synthesis at high production rates by flame spray pyrolysis. Chem. Eng. Sci. 58:1969

    Article  CAS  Google Scholar 

  • Nakaso K., Fujimoto T., Seto T., Shimada M, Okuyama K., Lunden M.M. (2001) Size distribution change of titania nano-particle agglomerates generated by gas phase reaction, agglomeration and sintering. Aerosol Sci. Technol. 35:929

    Article  CAS  Google Scholar 

  • Pitkänen, A., J.M. Mäkelä, M. Nurminen, A. Oksanen, K. Janka, J. Keskinen, H. Keskinen, J.K. Liimatainen, S. Hellstén & T. Määttä, 2005. Numerical study of silica particle formation in turbulent H2/O2 flame, IRFR Combust. J. Article December No 200509, 1

  • Pratsinis S.E. (1998) Flame Aerosol Synthesis of Ceramic Powders. Prog. Energy Combust. Sci. 24:197

    Article  CAS  Google Scholar 

  • Rao A.K., Whitby K.T (1978) Non-ideal collection characteristics of inertial impactors-II. J. Aerosol Sci. 9:87

    Article  Google Scholar 

  • Ristimäki J., Virtanen A., Marjamäki M., Rostedt A., Keskinen J. (2002) On-line measurement of size distribution and effective density of submicron aerosol particles. J. Aerosol Sci. 33:1541

    Article  Google Scholar 

  • Schulz H., Mädler L., Strobel R., Jossen R., Johannessen T., Pratsinis S.E. (2005) Independent control of metal cluster and ceramic particle characteristics during one-step synthesis of Pt/TiO2. J. Mater. Res. 20:2568

    Article  CAS  Google Scholar 

  • Stark W.J., Strobel R., Gunther D., Baiker A., Pratsinis S.E. (2002) Flame-made titania-silica doped with transition metals: structural properties and catalytic behaviour in epoxidation. J. Mater. Chem. 12:3620

    Article  CAS  Google Scholar 

  • Stark W.J., Wegner K., Pratsinis S.E., Baiker A. (2001) Flame aerosol synthesis of vanadia–titania nanoparticles: structural and catalytic properties in the selective catalytic reduction NO by NH3. J. Catal. 197:182

    Article  CAS  Google Scholar 

  • Stern K.H., 2001. High Temperature Properties and Thermal Decomposition of Inorganic Salts with Oxyanions. CRC Press, Boca Raton

  • Strobel R., Stark W.J., Mädler L., Pratsinis S.E., Baiker A. (2003) Flame-made platinium/alumina: structural properties and catalytic behaviour in enantioselective hydrogenation. J. Catal. 213:296

    Article  CAS  Google Scholar 

  • Teleki A., Pratisinis S.E., Wegner K., Krumeich F., Jossen R. (2005) Flame-coating of titania particles with silica. J. Mater. Res. 20:1336

    Article  CAS  Google Scholar 

  • Teoh W.Y., Mädler L., Beydoun D., Pratsinis S.E., Amal R. (2005) Direct (one-step) synthesis of TiO2 and Pt/TiO2 nanoparticles for photocatalytic mineralisation of sucrose. Chem. Eng. Sci. 60:5852

    Article  CAS  Google Scholar 

  • Tikkanen J., Gross K.A., Berndt C.C., Pitkänen V., Keskinen J., Raghu S., Rajala M., Karthikeyan J. (1997) Characteristics of the liquid flame spray process. Surf. Coatings Technol. 90:210

    Article  CAS  Google Scholar 

  • Vemury S., Pratsinis S.E. (1995) Dopants in flame synthesis of titania. J. Am. Ceram. Soc. 78:2984

    Article  CAS  Google Scholar 

  • Virtanen A., Ristimäki J., Keskinen J. (2004) Method for measuring effective density and fractal dimension of aerosol agglomerates. Aerosol Sci. Technol. 38:437

    Article  CAS  Google Scholar 

  • Xing Y., Rosner D.E. (1999) Prediction of spherule size in gas phase nanoparticle synthesis. J. Nanoparticle Res. 1:277

    Article  CAS  Google Scholar 

  • Yang G., Biswas P. (1997) Study of the sintering of nanosized titania agglomerates in flames using in situ light scattering measurements. Aerosol Sci. Technol. 27:507

    CAS  Google Scholar 

  • Yang G., Biswas P. (1999) Deposition of multifunctional titania ceramic films by aerosol routes. J. Am. Ceram. Soc. 82:2573

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Tekes (The National Technology Agency, Project Shine Pro/Pinta), Tampere University of Technology and Finnish Academy of Science and Letters. We gratefully thank Juha Heikkilä for his help in density calculation. Elemental mapping analysis was performed by Dr. Raija Peura, Institute of Electron Optics University of Oulu. We also kindly thank Dr. Sami Areva from Department of Physical Chemistry, Åbo Akademi University for XPS-analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Keskinen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keskinen, H., Mäkelä, J.M., Aromaa, M. et al. Effect of silver addition on the formation and deposition of titania nanoparticles produced by liquid flame spray. J Nanopart Res 9, 569–588 (2007). https://doi.org/10.1007/s11051-006-9073-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-006-9073-x

Key words:

Navigation