Skip to main content
Log in

Large Molecules as Models for Small Particles in Aqueous Geochemistry Research

  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Many questions that geochemists now pose about mineral surfaces concern the properties of individual molecular functional groups. These questions can be answered directly with large aqueous molecules where the positions of atoms can be determined with accuracy and related to the reactive properties. It is time to abandon this approach with colloidal solid suspensions and employ aqueous molecular clusters. The reactive properties of individual oxygens can be determined separately using these aqueous clusters in spectroscopic studies. These molecules are sufficiently large (1–5 nm) that they overlap in size with the smallest colloids, yet the bond lengths and atom positions can be determined unequivocally from X-ray structural studies. In this paper we present research on a 2-nm cluster that provides a particular useful example. These molecules, unlike surface structures that are inferred from bulk structures, allow direct comparison of experimental data with molecular simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Al 30 :

Al2O8Al28(OH)56(H2O) 18+26 (aq)

Al 13 :

AlO4Al12(OH)24(H2O) 7+12

μ 3−OH:

a hydroxyl ligand bridging three metals

μ 2−OH:

a hydroxyl ligand bridging two metals

μ 4−O:

an oxo ligand bridging four metals

η−H2O:

a bound and nonbridging water molecule

References

  • B. Ali I.G. Dance D.C. Craig M.L. Scudder (1998) ArticleTitleA new type of zinc sulfide cluster [Zn10S7(py)9(SO4)3]·3H2O J. Chem. Soc. Dalton Trans. 1998 1661–1667 Occurrence Handle10.1039/a707873k

    Article  Google Scholar 

  • L. Allouche C. Gérardin T. Loiseau G. Férey F. Taulelle (2000) ArticleTitleAl30: a giant aluminum polycation Angew. Chem. Int. Ed. 39 511–514 Occurrence Handle10.1002/(SICI)1521-3773(20000204)39:3<511::AID-ANIE511>3.0.CO;2-N

    Article  Google Scholar 

  • Banerjee, D., B. Studer, D. Rentsch & G. Furrer, Acid–Base chemistry of the Al30 nanocluster (to be submitted to Geochim. Cosmochim. Acta

  • B.R. Bickmore C.J. Tadanier K.M. Rosso W.D. Monn D.L. Eggett (2004) ArticleTitleBond-valence methods for pKa prediction: critical reanalysis and a new approach Geochim. Cosmochim. Acta 68 2025–2042 Occurrence Handle10.1016/j.gca.2003.11.008

    Article  Google Scholar 

  • W.H. Casey T.W. Swaddle (2003) ArticleTitleWhy small? The use of small inorganic clusters to understand mineral surface and dissolution reactions in geochemistry Rev. Geophys. 41 410–419 Occurrence Handle10.1029/2002RG000118

    Article  Google Scholar 

  • Casey, W.H., B.L. Phillips & G. Furrer, 2001. Aqueous aluminum polynuclear complexes and nanoclusters: a review. In: Banfield, J.F. & A. Navrotsky, eds. Nanoparticles in the Environment. Rev. Mineral. Geochem. 44, 167–216

  • C.P. Collier T. Vossmeyer J.R. Heath (1998) ArticleTitleNanocrystal superlattices Ann. Rev. Phys. Chem. 49 371–404 Occurrence Handle10.1146/annurev.physchem.49.1.371

    Article  Google Scholar 

  • I.G. Dance A. Choy M.L. Scudder (1984) ArticleTitleSyntheses, properties, and molecular and crystal-structures of (Me4N)4[S4Zn10(SPh)16] (Me4N) n [Se4Cd10(SPh)16] – molecular supertetrahedral fragments of the cubic metal chalcogenide lattice J. Am. Chem. Soc. 106 6285–6295 Occurrence Handle10.1021/ja00333a030

    Article  Google Scholar 

  • S.W. de Leeuw Particlede J.W. Perram E.R. Smith (1980) ArticleTitleSimulation of electrostatic systems in periodic boundary-conditions 1. Lattice sums and dielectric-constants Proc. Roy. Soc. Lond. A 373 27–56

    Google Scholar 

  • A.R. Felmy J.R. Rustad (1998) ArticleTitleMolecular statics calculations of proton binding to goethite surfaces: thermodynamic modeling of the surface charging and protonation of goethite in aqueous solution Geochim. Cosmochim. Acta 62 25–31 Occurrence Handle10.1016/S0016-7037(97)00325-6

    Article  Google Scholar 

  • N.S. Foster J.E. Amonette S.T. Autrey (1999) ArticleTitleIn situ detection of chromate using photoacoustic spectroscopy Appl. Spectrosc. 53 735–740 Occurrence Handle10.1366/0003702991947180

    Article  Google Scholar 

  • G. Furrer Chr. Ludwig P.W. Schindler (1992) ArticleTitleOn the chemistry of the Keggin Al13 polymer J. Coll. Interf. Sci. 149 56–67 Occurrence Handle10.1016/0021-9797(92)90391-X

    Article  Google Scholar 

  • G.V. Gibbs (1982) ArticleTitleMolecules as models for bonding in silicates Am. Mineral. 67 421–450

    Google Scholar 

  • J.W. Halley J.R. Rustad A. Rahman (1993) ArticleTitleA polarizable, dissociating molecular dynamics model for liquid water J. Chem. Phys. 98 4110–4119 Occurrence Handle10.1063/1.465046

    Article  Google Scholar 

  • M.A. Henderson S.A. Joyce J.R. Rustad (1998) ArticleTitleInteraction of water with the (1 × 1) and (2 × 1) surfaces of a-Fe2O3(012) Surf. Sci. 417 66–81 Occurrence Handle10.1016/S0039-6028(98)00662-1

    Article  Google Scholar 

  • M.A. Henderson (1996) ArticleTitleStructural sensitivity in the dissociation of water on TiO2 single crystal surfaces Langmuir 12 5093–5098 Occurrence Handle10.1021/la960360t

    Article  Google Scholar 

  • T. Hiemstra W.H. Riemsdijk ParticleVan G.H. Bolt (1989a) ArticleTitleMultisite proton adsorption modeling at the solid/solution interface of (hydr)oxides: a new approach. I. Model description and evaluation of intrinsic reaction constants J. Colloid Interf. Sci. 133 91–104 Occurrence Handle10.1016/0021-9797(89)90284-1

    Article  Google Scholar 

  • T. Hiemstra J.C.M. De Wit ParticleDe W.H. Van Riemsdijk ParticleVan (1989) ArticleTitleMultisite proton adsorption modeling at the solid/solution interface of (hydr)oxides: a new approach. II. Application to various important (hydr)oxides J. Colloid Interf. Sci. 133 105–117 Occurrence Handle10.1016/0021-9797(89)90285-3

    Article  Google Scholar 

  • M.H. Hochella (2002) ArticleTitleThere’s plenty of room at the bottom: Nanoscience in geochemistry Geochim. Cosmochim. Acta 66 735–743 Occurrence Handle10.1016/S0016-7037(01)00868-7

    Article  Google Scholar 

  • T. Kendelewicz P. Liu C.S. Doyle G.E. Brown E.J. Nelson S.A. Chambers (2000) ArticleTitleReaction of water with the (100) and (111) surfaces of Fe3O4 Surf. Sci. 453 32–46 Occurrence Handle10.1016/S0039-6028(00)00305-8

    Article  Google Scholar 

  • G.S.H. Lee D.C. Craig I. Ma M.L. Scudder T.D. Bailey I.G. Dance (1988) ArticleTitle[S4Cd17(SPh)28]2−, the 1st member of a 3rd series of tetrahedral [SwMx(SR)y]z clusters J. Am. Chem. Soc. 110 4863–4864 Occurrence Handle10.1021/ja00222a075

    Article  Google Scholar 

  • P. Liu T. Kendelewicz G.E. Brown E.J. Nelson S.A. Chambers (1998) ArticleTitleReaction of water vapor with α-Al2O3(0001) and α-Fe2O3(0001) surfaces: synchrotron X-ray photoemission studies and thermodynamic calculations Surf. Sci. 417 53–65 Occurrence Handle10.1016/S0039-6028(98)00661-X

    Article  Google Scholar 

  • M.D. Nyman M.J. Hampden-Smith E.N. Duesler (1996) ArticleTitleSynthesis and characterization of the first neutral zinc–sulfur cluster Zn10S4(SEt)12L4 Inorg. Chem. 35 802–803 Occurrence Handle10.1021/ic951470a Occurrence Handle11666247

    Article  PubMed  Google Scholar 

  • G.A. Parks (1965) ArticleTitleThe isoelectric points of solid oxides, solid hydroxides, and aqueous hydroxo complex systems Chem. Rev. 65 177–198 Occurrence Handle10.1021/cr60234a002

    Article  Google Scholar 

  • B.L. Phillips A.P. Lee W.H. Casey (2003) ArticleTitleRates of oxygen exchange between the Al2O8Al28(OH)56(H2O 18+26 (aq) (Al30) molecule and aqueous solution Geochim. Cosmochim. Acta. 67 2725–2733 Occurrence Handle10.1016/S0016-7037(03)00108-X

    Article  Google Scholar 

  • J. Rowsell L.F. Nazar (2000) ArticleTitleSpeciation and thermal transformation in alumina sols: structures of the polyhydroxyoxoaluminum cluster [Al30O8(OH)56(H2O)26]18+ and its Keggin moieté J. Am. Chem. Soc. 122 3777–3778 Occurrence Handle10.1021/ja993711+

    Article  Google Scholar 

  • J.R. Rustad A.R. Felmy B.P. Hay (1996) ArticleTitleMolecular statics calculations of proton binding to goethite surfaces: a new approach to estimation of stability constants for multisite surface complexation models Geochim. Cosmochim. Acta. 60 1563–1576 Occurrence Handle10.1016/0016-7037(96)00035-X

    Article  Google Scholar 

  • Rustad, J.R., 2001. Molecular models of surface relaxation, hydroxylation, and surface charging at oxide-water interfaces. In: Kubicki, J.D. & R.T. Cygan, eds. Molecular Modeling Theory: Applications in the Geosciences. Rev. Mineral. Geochem. 42, 169–197

  • J.R. Rustad A.R. Felmy E.J. Bylaska (2003) ArticleTitleMolecular simulation of the magnetite-water interface Geochim. Cosmochim. Acta. 67 1001–1016 Occurrence Handle10.1016/S0016-7037(02)00900-6

    Article  Google Scholar 

  • Rustad, J.R., K.M. Rosso & A.R. Felmy, 2004a. A molecular dynamics investigation of ferrous–ferric electron transfer in a hydrolyzing aqueous solution: calculation of the pH dependence of the diabatic transfer barrier and the potential of mean force. J. Chem. Phys. 120, 7607–7615

    Google Scholar 

  • J.R. Rustad J.S. Loring W.H. Casey (2004b) ArticleTitleOxygen-exchange pathways in aluminum polyoxocations Geochim. Cosmochim. Acta. 68 3011–3017 Occurrence Handle10.1016/j.gca.2003.12.021

    Article  Google Scholar 

  • M.L. Saboungi A. Rahman J.W. Halley M. Blander (1988) ArticleTitleMolecular-dynamics studies of complexing in binary molten-salts with polarizable anions – MAX4 J. Chem. Phys. 88 5818–5823 Occurrence Handle10.1063/1.454541

    Article  Google Scholar 

  • D.A. Sverjensky N. Sahai (1996) ArticleTitleTheoretical prediction of single-site surface-protonation equilibrium constants for oxides and silicates in water Geochim. Cosmochim. Acta 60 3773–3797 Occurrence Handle10.1016/0016-7037(96)00207-4

    Article  Google Scholar 

  • T.P. Trainor P.J. Eng G.E. Brown I.K. Robinson M. De Santis ParticleDe (2002) ArticleTitleCrystal truncation rod diffraction study of the alpha-Al2O3 surface Surf. Sci. 496 238–250 Occurrence Handle10.1016/S0039-6028(01)01617-X

    Article  Google Scholar 

  • T. Vossmeyer G. Reck B. Schulz L. Katsikas H. Weller (1995) ArticleTitleDouble-layer superlattice structure built up of Cd32S14(SCH2CH(OH)CH3)364H2O clusters J. Am. Chem. Soc. 117 12881–12882 Occurrence Handle10.1021/ja00156a035

    Article  Google Scholar 

  • D.J. Wesolowski M.L. Machesky D.A. Palmer L.M. Anovitz (2000) ArticleTitleMagnetite surface charge studies to 290°C from in situ pH titrations Chem. Geol. 167 193–229 Occurrence Handle10.1016/S0009-2541(99)00209-0

    Article  Google Scholar 

  • Z. Zhang P. Fenter L. Cheng N.C. Sturchio M.J. Bedzyk M. Predota A. Bandura J.D. Kubicki S.N. Lvov P.T. Cummings A.A. Chialvo M.K. Ridley P. Benezeth L. Anovitz D.A. Palmer M.L. Machesky D.J. Wesolowski (2004) ArticleTitleIon adsorption at the rutile-water interface: linking molecular and macroscopic properties Langmuir 20 4954–4969 Occurrence Handle10.1021/la0353834 Occurrence Handle15984256

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William H. Casey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Casey, W.H., Rustad, J.R., Banerjee, D. et al. Large Molecules as Models for Small Particles in Aqueous Geochemistry Research. J Nanopart Res 7, 377–387 (2005). https://doi.org/10.1007/s11051-005-4718-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-005-4718-8

Keywords

Navigation