Skip to main content
Log in

About block-parallel Boolean networks: a position paper

  • Published:
Natural Computing Aims and scope Submit manuscript

Abstract

In automata networks, it is well known that the way entities update their states over time has a major impact on their dynamics. In particular, depending on the chosen update schedule, the underlying dynamical systems may exhibit more or less asymptotic dynamical behaviours such as fixed points or limit cycles. Since such mathematical models have been used in the framework of biological networks modelling, the question of choosing appropriate update schedules has arised soon. In this note, focusing on Boolean networks, our aim is to emphasise that the adequate way of thinking regulations and genetic expression over time is certainly not to consider a wall segregating synchronicity from asynchronicity because they actually complement rather well. In particular, we highlight that specific update schedules, namely block-parallel update schedules, whose intrinsic features are still not known from a theoretical point of view, admit realistic and pertinent properties in the context of biological modelling and deserve certainly more attention from the community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. \(\forall i \in V,\, F_i\) obviously equals \(F_{\{i\}}\).

References

  • Aracena J, Demongeot J, Fanchon É, Montalva M (2013a) On the number of different dynamics in Boolean networks with deterministic update schedules. Math Biosci 242:188–194

    Article  MathSciNet  Google Scholar 

  • Aracena J, Demongeot J, Fanchon É, Montalva M (2013b) On the number of update digraphs and its relation with the feedback arc sets and tournaments. Discrete Appl Math 161:1345–1355

    Article  MathSciNet  Google Scholar 

  • Aracena J, Demongeot J, Goles E (2004) Positive and negative circuits in discrete neural networks. IEEE Trans Neural Netw 15:77–83

    Article  Google Scholar 

  • Aracena J, Fanchon É, Montalva M, Noual M (2011) Combinatorics on update digraphs in Boolean networks. Discrete Appl Math 159:401–409

    Article  MathSciNet  Google Scholar 

  • Aracena J, Goles E, Moreira A, Salinas L (2009) On the robustness of update schedules in Boolean networks. Biosystems 97:1–8

    Article  Google Scholar 

  • Aracena J, Gómez L, Salinas L (2013) Limit cycles and update digraphs in Boolean networks. Discrete Appl Math 161:1–12

    Article  MathSciNet  Google Scholar 

  • Beauchaine T (2001) Vagal tone, development, and Gray’s motivational theory: toward an integrated model of autonomic nervous system functioning in psychopathology. Dev Psychopathol 13:183–214

    Article  Google Scholar 

  • Bendix C, Marshall CM, Harmon FG (2015) Circadian clock genes universally control key agricultural traits. Mol Plant 8:1135–1152

    Article  Google Scholar 

  • Demongeot J (1987) Random automata networks. In: Soulie F, Robert Y, Tchuente M (eds) Automata networks in computer science: theory and applications. Princeton University Press, pp 47–57

  • Demongeot J, Elena A, Sené S (2008) Robustness in regulatory networks: a multi-disciplinary approach. Acta Biotheor 56:27–49

    Article  Google Scholar 

  • Demongeot J, Khlaifi H, Istrate D, Mégret L, Taramasco C, Thomas R (2020) From conservative to dissipative non-linear differential systems. An application to the cardio-respiratory regulation. Discret Contin Dyn Syst. https://doi.org/10.3934/dcdss.2020181

    Article  Google Scholar 

  • Demongeot J, Noual M, Sené S (2012) Combinatorics of Boolean automata circuits dynamics. Discrete Appl Math 160:398–415

    Article  MathSciNet  Google Scholar 

  • Dergacheva O, Griffioen KJ, Neff RA, Mendelowitz D (2010) Respiratory modulation of premotor cardiac vagal neurons in the brainstem. Respir Physiol Neurobiol 174:102–110

    Article  Google Scholar 

  • Elena A (2009) Robustesse des réseaux d’automates booléens à seuil aux modes d’itération. Application à la modélisation des réseaux de régulation génétique. Ph.D. thesis, Université Joseph Fourier–Grenoble

  • Gershenson C (2003) Classification of random Boolean networks. In: Proceedings of ICAL’03. MIT Press, pp. 1–8

  • Goldbeter A (1995) A model for circadian oscillations in the Drosophila period protein (PER). Proc R Soc Lond B Biol Sci 261:319–324

    Article  Google Scholar 

  • Goles E, Martínez S (1990) Neural and automata networks: dynamical behavior and applications. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Goles E, Noual M (2010) Block-sequential update schedules and Boolean automata circuits. In: Proceedings of AUTOMATA’2010, DMTCS, pp 41–50

  • Goles E, Noual M (2012) Disjunctive networks and update schedules. Adv Appl Math 48:646–662

    Article  MathSciNet  Google Scholar 

  • Hanse JC, Ausio J (1992) Chromatin dynamics and the modulation of genetic activity. Trends Biochem Sci 17:187–191

    Article  Google Scholar 

  • Hardin PE, Hall JC, Rosbash M (1990) Feedback of the Drosophila period gene product on circadian cycling of its messenger RNA levels. Nature 343:536–540

    Article  Google Scholar 

  • Harvey I, Bossomaier T (1997) Time out of joint: attractors in asynchronous random Boolean networks. In: Proceedings of ECAL’97. MIT Press, pp 67–75

  • Kauffman SA (1969a) Homeostasis and differentiation in random genetic control networks. Nature 224:177–178

    Article  Google Scholar 

  • Kauffman SA (1969b) Metabolic stability and epigenesis in randomly constructed genetic nets. J Theor Biol 22:437–467

    Article  MathSciNet  Google Scholar 

  • Kauffman SA (1974) The large scale structure and dynamics of gene control circuits: an ensemble approach. J Theor Biol 44:167–190

    Article  Google Scholar 

  • McCulloch WS, Pitts WH (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys 5:115–133

    Article  MathSciNet  Google Scholar 

  • Mendoza L, Alvarez-Buylla ER (1998) Dynamics of the genetic regulatory network for Arabidopsis thaliana flower morphogenesis. J Theor Biol 193:307–319

    Article  Google Scholar 

  • Moraes DJA, Machado BH, Zoccal DB (2014) Coupling of respiratory and sympathetic activities in rats submitted to chronic intermittent hypoxia. Prog Brain Res 212:25–38

    Article  Google Scholar 

  • Mortveit HS, Reidys CM (2001) Discrete, sequential dynamical systems. Discrete Math 226:281–295

    Article  MathSciNet  Google Scholar 

  • Noual M (2012) Updating automata networks. Ph.D. thesis, École normale supérieure de Lyon

  • Reidys CM (2006) Sequential dynamical systems over words. Ann Comb 10:481–498

    Article  MathSciNet  Google Scholar 

  • Remy É, Ruet P (2008) From minimal signed circuits to the dynamics of Boolean regulatory networks. Bioinformatics 24:i220–i226

    Article  Google Scholar 

  • Remy É, Ruet P, Thieffry D (2008) Graphic requirement for multistability and attractive cycles in a Boolean dynamical framework. Adv Appl Math 41:335–350

    Article  MathSciNet  Google Scholar 

  • Richard A, Comet JP (2007) Necessary conditions for multistationarity in discrete dynamical systems. Discrete Appl Math 155:2403–2413

    Article  MathSciNet  Google Scholar 

  • Robert F (1969) Blocs-H-matrices et convergence des méthodes itératives classiques par blocs. Linear Algebra Appl 2:223–265

    Article  MathSciNet  Google Scholar 

  • Robert F (1980) Itérations sur des ensembles finis et automates cellulaires contractants. Linear Algebra Appl 29:393–412

    Article  MathSciNet  Google Scholar 

  • Robert F (1986) Discrete iterations: a metric study. Springer, Berlin

    Book  Google Scholar 

  • Robert F (1995) Les systèmes dynamiques discrets. Springer, Berlin

    MATH  Google Scholar 

  • Saint Savage N (2005) The effects of state dependent and state independent probabilistic updating on Boolean network dynamics. Ph.D. thesis, University of Manchester

  • Sehgal A, Price JL, Man B, Young MW (1994) Loss of circadian behavioral rhythms and per RNA oscillations in the Drosophila mutant timeless. Science 263:1603–1606

    Article  Google Scholar 

  • Sené S (2008) Influence des conditions de bord dans les réseaux d’automates booléens à seuil et application à la biologie. Ph.D. thesis, Université Joseph Fourier–Grenoble

  • Sené S (2012) Sur la bio-informatique des réseaux d’automates. Habilitation thesis, Université d’Évry–Val d’Essonne

  • Thellier M, Demongeot J, Norris V, Guespin J, Ripoll C, Thomas R (2004) A logical (discrete) formulation for the storage and recall of environmental signals in plants. Plant Biol 6:590–597

    Article  Google Scholar 

  • Thomas R (1973) Boolean formalization of genetic control circuits. J Theor Biol 42:563–585

    Article  Google Scholar 

  • Thomas R (1978) Logical analysis of systems comprising feedback loops. J Theor Biol 73:631–656

    Article  Google Scholar 

  • Thomas R (1981) On the relation between the logical structure of systems and their ability to generate multiple steady states or sustained oscillations. In: Della Dora J, Demongeot J, Lacolle B (eds) Numerical methods in the study of critical phenomena. Springer Series in Synergetics, vol 9. Springer, pp 180–193

  • Thomas R (1991) Regulatory networks seen as asynchronous automata: a logical description. J Theor Biol 153:1–23

    Article  Google Scholar 

Download references

Acknowledgements

The present work has been partially supported by the ANR-13-TECS-0011 project “e-swallhome” (JD), and by the ANR-18-CE40-0002 “FANs”, the PACA-15-APEX-01134 “FRI” and the ECOS C16E01 projects (SS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacques Demongeot.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demongeot, J., Sené, S. About block-parallel Boolean networks: a position paper. Nat Comput 19, 5–13 (2020). https://doi.org/10.1007/s11047-019-09779-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11047-019-09779-x

Keywords

Mathematics Subject Classification

Navigation