Skip to main content

Advertisement

Log in

Inhibitory Effects of Photodynamic Inactivation on Planktonic Cells and Biofilms of Candida auris

  • Original Article
  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

Candida auris is an emerging pathogen that has caused numerous severe infections in recent years, and has therefore become a global concern for public health agencies. Most conventional antifungal agents, especially fluconazole, have shown limited effects on this pathogen. New methods to restrict this pathogen are in urgent demand. Antimicrobial photodynamic therapy (aPDT) has been shown to be a promising technique against multiple pathogenic fungi. This study sought to determine the in vitro effect of aPDT using methylene blue (MB) combined with light-emitting diode (LED) on the viability of planktonic cells and biofilms of five clinical strains of C. auris. MB (8, 16 and 32 μg/ml) was applied as the photosensitizer, and a LED (635 nm, 12 and 24 J/cm2) device was used as light source to activate the photosensitizer. The results showed that there was no growth of tested C. auris strains following aPDT on planktonic cultures. In addition, aPDT exhibited colony-forming unit reduction of up to 7.20 log10 against C. auris biofilms. These data demonstrate that in vitro aPDT with MB and LED offers promising potential for the treatment of C. auris infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Satoh K, Makimura K, Hasumi Y, Nishiyama Y, Uchida K, Yamaguchi H. Candida auris sp. nov., a novel ascomycetous yeast isolated from the external ear canal of an inpatient in a Japanese hospital. Microbiol Immunol. 2009;53:41–4. https://doi.org/10.1111/j.1348-0421.2008.00083.x.

    Article  CAS  PubMed  Google Scholar 

  2. Cortegiani A, Misseri G, Fasciana T, Giammanco A, Giarratano A, Chowdhary A. Epidemiology, clinical characteristics, resistance, and treatment of infections by Candida auris. J Intensive Care. 2018;6:69. https://doi.org/10.1186/s40560-018-0342-4.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Biswal M, Rudramurthy SM, Jain N, Shamanth AS, Sharma D, Jain K, et al. Controlling a possible outbreak of Candida auris infection: lessons learnt from multiple interventions. J Hosp Infect. 2017;97:363–70. https://doi.org/10.1016/j.jhin.2017.09.009.

    Article  CAS  PubMed  Google Scholar 

  4. Schelenz S, Hagen F, Rhodes JL, Abdolrasouli A, Chowdhary A, Hall A, et al. First hospital outbreak of the globally emerging Candida auris in a European hospital. Antimicrob Resist Infect Control. 2016;5:35. https://doi.org/10.1186/s13756-016-0132-5.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Chowdhary A, Voss A, Meis JF. Multidrug-resistant Candida auris: ‘new kid on the block’ in hospital-associated infections? J Hosp Infect. 2016;94:209–12. https://doi.org/10.1016/j.jhin.2016.08.004.

    Article  CAS  PubMed  Google Scholar 

  6. England PH. Guidance for the laboratory investigation, management and infection prevention and control for cases of Candida auris. London: Public Health England; 2017.

    Google Scholar 

  7. Lepak AJ, Zhao M, Berkow EL, Lockhart SR, Andes DR. Pharmacodynamic optimization for treatment of invasive Candida auris infection. Antimicrob Agents Chemother. 2017;61:e00791-17. https://doi.org/10.1128/aac.00791-17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Vallabhaneni S, Kallen A, Tsay S, Chow N, Welsh R, Kerins J, et al. Investigation of the First Seven Reported Cases of Candida auris, a Globally Emerging Invasive, Multidrug-Resistant Fungus-United States, May 2013-August 2016. Am J Transplant. 2017;17:296–9. https://doi.org/10.1111/ajt.14121.

    Article  CAS  PubMed  Google Scholar 

  9. Sharma C, Kumar N, Pandey R, Meis JF, Chowdhary A. Whole genome sequencing of emerging multidrug resistant Candida auris isolates in India demonstrates low genetic variation. New Microbes New Infect. 2016;13:77–82. https://doi.org/10.1016/j.nmni.2016.07.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Das S, Rai G, Tigga RA, Srivastava S, Singh PK, Sharma R, et al. Candida auris in critically ill patients: emerging threat in intensive care unit of hospitals. J Mycol Med. 2018;28:514–8. https://doi.org/10.1016/j.mycmed.2018.06.005.

    Article  CAS  PubMed  Google Scholar 

  11. Chowdhary A, Sharma C, Duggal S, Agarwal K, Prakash A, Singh PK, et al. New clonal strain of Candida auris, Delhi, India. Emerg Infect Dis. 2013;19:1670–3. https://doi.org/10.3201/eid1910.130393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kathuria S, Singh PK, Sharma C, Prakash A, Masih A, Kumar A, et al. Multidrug-resistant Candida auris misidentified as Candida haemulonii: characterization by matrix-assisted laser desorption ionization-time of flight mass spectrometry and DNA sequencing and its antifungal susceptibility profile variability by Vitek 2, CLSI broth microdilution, and etest method. J Clin Microbiol. 2015;53:1823–30. https://doi.org/10.1128/JCM.00367-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Azar MM, Turbett SE, Fishman JA, Pierce VM. Donor-derived transmission of Candida auris during lung transplantation. Clin Infect Dis. 2017;65:1040–2. https://doi.org/10.1093/cid/cix460.

    Article  PubMed  Google Scholar 

  14. Rajendran R, Sherry L, Nile CJ, Sherriff A, Johnson EM, Hanson MF, et al. Biofilm formation is a risk factor for mortality in patients with Candida albicans bloodstream infection-Scotland, 2012–2013. Clin Microbiol Infect. 2016;22:87–93. https://doi.org/10.1016/j.cmi.2015.09.018.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Borman AM, Szekely A, Johnson EM. Comparative pathogenicity of United Kingdom isolates of the emerging pathogen Candida auris and other key pathogenic Candida species. mSphere. 2016;1:e00189-16. https://doi.org/10.1128/msphere.00189-16.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kean R, Delaney C, Sherry L, Borman A, Johnson EM, Richardson MD, et al. Transcriptome assembly and profiling of Candida auris reveals novel insights into biofilm-mediated resistance. mSphere. 2018;3:e00334-18. https://doi.org/10.1128/msphere.00334-18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wainwright M, Maisch T, Nonell S, Plaetzer K, Almeida A, Tegos GP, et al. Photoantimicrobials-are we afraid of the light? Lancet Infect Dis. 2017;17:e49–55. https://doi.org/10.1016/S1473-3099(16)30268-7.

    Article  PubMed  Google Scholar 

  18. Baltazar LM, Ray A, Santos DA, Cisalpino PS, Friedman AJ, Nosanchuk JD. Antimicrobial photodynamic therapy: an effective alternative approach to control fungal infections. Front Microbiol. 2015;6:202. https://doi.org/10.3389/fmicb.2015.00202.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Gao L, Jiang S, Sun Y, Deng M, Wu Q, Li M, et al. Evaluation of the effects of photodynamic therapy alone and combined with standard antifungal therapy on planktonic cells and biofilms of Fusarium spp. and Exophiala spp. Front Microbiol. 2016;7:617. https://doi.org/10.3389/fmicb.2016.00617.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Pires L, Bosco Sde M, Baptista MS, Kurachi C. Photodynamic therapy in Pythium insidiosum—an in vitro study of the correlation of sensitizer localization and cell death. PLoS ONE. 2014;9:e85431. https://doi.org/10.1371/journal.pone.0085431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lyon JP, Moreira LM, de Carvalho VS, dos Santos FV, de Lima CJ, de Resende MA. In vitro photodynamic therapy against Foncecaea pedrosoi and Cladophialophora carrionii. Mycoses. 2013;56:157–61. https://doi.org/10.1111/j.1439-0507.2012.02226.x.

    Article  PubMed  Google Scholar 

  22. Pereira Gonzales F, Maisch T. Photodynamic inactivation for controlling Candida albicans infections. Fungal Biol. 2012;116:1–10. https://doi.org/10.1016/j.funbio.2011.10.001.

    Article  CAS  PubMed  Google Scholar 

  23. Pierce CG, Uppuluri P, Tristan AR, Wormley FL Jr, Mowat E, Ramage G, et al. A simple and reproducible 96-well plate-based method for the formation of fungal biofilms and its application to antifungal susceptibility testing. Nat Protoc. 2008;3:1494–500. https://doi.org/10.1038/nport.2008.141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dai T, Fuchs BB, Coleman JJ, Prates RA, Astrakas C, St Denis TG, et al. Concepts and principles of photodynamic therapy as an alternative antifungal discovery platform. Front Microbiol. 2012;3:120. https://doi.org/10.3389/fmicb.2012.00120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Abrahamse H, Hamblin MR. New photosensitizers for photodynamic therapy. Biochem J. 2016;473:347–64. https://doi.org/10.1042/BJ20150942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lopes M, Alves CT, Rama Raju B, Goncalves MS, Coutinho PJ, Henriques M, et al. Application of benzo[a]phenoxazinium chlorides in antimicrobial photodynamic therapy of Candida albicans biofilms. J Photochem Photobiol B. 2014;141:93–9. https://doi.org/10.1016/j.jphotobiol.2014.09.006.

    Article  CAS  PubMed  Google Scholar 

  27. Liu S, Qiao S, Li L, Qi G, Lin Y, Qiao Z, et al. Surface charge-conversion polymeric nanoparticles for photodynamic treatment of urinary tract bacterial infections. Nanotechnology. 2015;26:495602. https://doi.org/10.1088/0957-4484/26/49/495602.

    Article  CAS  PubMed  Google Scholar 

  28. Donnelly RF, McCarron PA, Tunney MM, David Woolfson A. Potential of photodynamic therapy in treatment of fungal infections of the mouth. Design and characterisation of a mucoadhesive patch containing toluidine blue O. J Photochem Photobiol B. 2007;86:59–69. https://doi.org/10.1016/j.jphotobiol.2006.07.011.

    Article  CAS  PubMed  Google Scholar 

  29. Ribeiro AP, Andrade MC, da Silva Jde F, Jorge JH, Primo FL, Tedesco AC, et al. Photodynamic inactivation of planktonic cultures and biofilms of Candida albicans mediated by aluminum-chloride-phthalocyanine entrapped in nanoemulsions. Photochem Photobiol. 2013;89:111–9. https://doi.org/10.1111/j.1751-1097.2012.01198.x.

    Article  CAS  Google Scholar 

  30. Rosseti IB, Chagas LR, Costa MS. Photodynamic antimicrobial chemotherapy (PACT) inhibits biofilm formation by Candida albicans, increasing both ROS production and membrane permeability. Lasers Med Sci. 2014;29:1059–64. https://doi.org/10.1007/s10103-013-1473-4.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Professor Haoping Liu from University of California, Irvine, for kindly providing us with isolates studied.

Funding

This work was supported by National Natural Science Foundation of China (31400131 to Lujuan Gao and 81401677 to Yi Sun), Natural Science Foundation of Shanghai (16ZR1431300 to Jingwen Tan), Shanghai Municipal Commission of Health and Family Planning (20154Y0196 to Jingwen Tan) and Fundamental Research Funds for the Central Universities (22120180341 to Jingwen Tan).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lianjuan Yang or Lujuan Gao.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: Mariana Henriques.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, J., Liu, Z., Sun, Y. et al. Inhibitory Effects of Photodynamic Inactivation on Planktonic Cells and Biofilms of Candida auris. Mycopathologia 184, 525–531 (2019). https://doi.org/10.1007/s11046-019-00352-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-019-00352-9

Keywords

Navigation