Skip to main content

Advertisement

Log in

Human Serum Potentiates the Expression of Genes Associated with Antifungal Drug Resistance in C. albicans Biofilms on Central Venous Catheters

  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

Candida albicans is a major agent of fungaemias and frequently causes systemic disease through seeded, blood stream dissemination. These infections, particularly common in hospitalized patients with central venous catheters (CVCs), appear to persevere due to biofilm reservoirs of the yeast that tend to develop on the device. Although it is known that candidal biofilms are intrinsically resistant to antifungals compared with their planktonic counterparts, there is a paucity of data on the expression of antifungal drug resistance genes (DRGs) in candidal biofilms in CVC reservoirs. Furthermore, notwithstanding the fact that CVCs are constantly bathed in human serum, there are no studies on the effect of the latter on the DRG expression in candidal biofilms. Hence, we developed in vitro biofilms of three different C. albicans strains on silicone CVC discs immersed in human serum and evaluated the temporal expression of nine antifungal DRGs. In an attempt to evaluate the effect of hyphal elements on DRG expression, we incorporated a hyphal mutant (HM) and its wild-type (WT) counterpart, as well as a fresh clinical isolate in the studies. Human serum significantly up-regulated DRG transcripts in Candida biofilms on CVCs, at different stages of biofilm growth, while the WT strain over-expressed more DRGs than the HM strain. Here, we report, for the first time, that both human serum and the hyphal elements of the yeast have a profound modulatory effect on DRG expression in C. albicans biofilms on CVCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Perlroth J, Choi B, Spellberg B. Nosocomial fungal infections: epidemiology, diagnosis, and treatment. Med Mycol. 2007;45(4):321–46. doi:10.1080/13693780701218689.

    Article  PubMed  Google Scholar 

  2. Kojic EM, Darouiche RO. Candida infections of medical devices. Clin Microbiol Rev. 2004;17(2):255–67.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Cauda R. Candidaemia in patients with an inserted medical device. Drugs. 2009;69(Suppl 1):33–8. doi:10.2165/11315520-000000000-00000.

    Article  PubMed  Google Scholar 

  4. Mukherjee PK, Chandra J. Candida biofilm resistance. Drug Res Updates. 2004;7(4–5):301–9. doi:10.1016/j.drup.2004.09.002.

    Article  CAS  Google Scholar 

  5. Nailis H, Kucharikova S, Ricicova M, Van Dijck P, Deforce D, Nelis H, et al. Real-time PCR expression profiling of genes encoding potential virulence factors in Candida albicans biofilms: identification of model-dependent and -independent gene expression. BMC Microbiol. 2010;10:114. doi:10.1186/1471-2180-10-114.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Samaranayake LP, McCourtie J, MacFarlane TW. Factors affecting the in vitro adherence of Candida albicans to acrylic surfaces. Arch Oral Biol. 1980;25(8–9):611–5.

    Article  CAS  PubMed  Google Scholar 

  7. Nikawa H, Nishimura H, Makihira S, Hamada T, Sadamori S, Samaranayake LP. Effect of serum concentration on Candida biofilm formation on acrylic surfaces. Mycoses. 2000;43(3–4):139–43.

    Article  CAS  PubMed  Google Scholar 

  8. Samaranayake YH, Cheung BP, Yau JY, Yeung SK, Samaranayake LP. Human serum promotes Candida albicans biofilm growth and virulence gene expression on silicone biomaterial. PLoS One. 2013;8(5):e62902. doi:10.1371/journal.pone.0062902.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Ramage G. Vande Walle K, Wickes BL, Lopez-Ribot JL. Standardized method for in vitro antifungal susceptibility testing of Candida albicans biofilms. Antimicrob Agents Chemother. 2001;45(9):2475–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Baillie GS, Douglas LJ. Matrix polymers of Candida biofilms and their possible role in biofilm resistance to antifungal agents. J antimicrob Chemother. 2000;46(3):397–403.

    Article  CAS  PubMed  Google Scholar 

  11. Bachmann SP, Ramage G, VandeWalle K, Patterson TF, Wickes BL, Lopez-Ribot JL. Antifungal combinations against Candida albicans biofilms in vitro. Antimicrob Agents Chemother. 2003;47(11):3657–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Vediyappan G, Rossignol T, d’Enfert C. Interaction of Candida albicans biofilms with antifungals: transcriptional response and binding of antifungals to beta-glucans. Antimicrob Agents Chemother. 2010;54(5):2096–111. doi:10.1128/AAC.01638-09.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Al-Fattani MA, Douglas LJ. Biofilm matrix of Candida albicans and Candida tropicalis: chemical composition and role in drug resistance. J Med Microbiol. 2006;55(Pt 8):999–1008. doi:10.1099/jmm.0.46569-0.

    Article  CAS  PubMed  Google Scholar 

  14. Kuhn DM, Chandra J, Mukherjee PK, Ghannoum MA. Comparison of biofilms formed by Candida albicans and Candida parapsilosis on bioprosthetic surfaces. Infect Immun. 2002;70(2):878–88.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Garcia-Sanchez S, Aubert S, Iraqui I, Janbon G, Ghigo JM, d’Enfert C. Candida albicans biofilms: a developmental state associated with specific and stable gene expression patterns. Eukaryot Cell. 2004;3(2):536–45.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Marchais V, Kempf M, Licznar P, Lefrancois C, Bouchara JP, Robert R, et al. DNA array analysis of Candida albicans gene expression in response to adherence to polystyrene. FEMS Microbiol Lett. 2005;245(1):25–32. doi:10.1016/j.femsle.2005.02.014.

    Article  CAS  PubMed  Google Scholar 

  17. Murillo LA, Newport G, Lan CY, Habelitz S, Dungan J, Agabian NM. Genome-wide transcription profiling of the early phase of biofilm formation by Candida albicans. Eukaryot Cell. 2005;4(9):1562–73. doi:10.1128/EC.4.9.1562-1573.2005.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Rogers PD, Barker KS. Genome-wide expression profile analysis reveals coordinately regulated genes associated with stepwise acquisition of azole resistance in Candida albicans clinical isolates. Antimicrob Agents Chemother. 2003;47(4):1220–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Mateus C, Crow SA Jr, Ahearn DG. Adherence of Candida albicans to silicone induces immediate enhanced tolerance to fluconazole. Antimicrob Agents Chemother. 2004;48(9):3358–66. doi:10.1128/AAC.48.9.3358-3366.2004.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Lopez-Ribot JL, McAtee RK, Lee LN, Kirkpatrick WR, White TC, Sanglard D, et al. Distinct patterns of gene expression associated with development of fluconazole resistance in serial Candida albicans isolates from human immunodeficiency virus-infected patients with oropharyngeal candidiasis. Antimicrob Agents Chemother. 1998;42(11):2932–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  21. Henry KW, Nickels JT, Edlind TD. Upregulation of ERG genes in Candida species by azoles and other sterol biosynthesis inhibitors. Antimicrob Agents Chemother. 2000;44(10):2693–700.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Thein ZM, Samaranayake YH, Samaranayake LP. Characteristics of dual species Candida biofilms on denture acrylic surfaces. Arch Oral Biol. 2007;52(12):1200–8. doi:10.1016/j.archoralbio.2007.06.007.

    Article  CAS  PubMed  Google Scholar 

  23. Jin Y, Yip HK, Samaranayake YH, Yau JY, Samaranayake LP. Biofilm-forming ability of Candida albicans is unlikely to contribute to high levels of oral yeast carriage in cases of human immunodeficiency virus infection. J Clin Microbiol. 2003;41(7):2961–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Samaranayake YH, Dassanayake RS, Jayatilake JA, Cheung BP, Yau JY, Yeung KW, et al. Phospholipase B enzyme expression is not associated with other virulence attributes in Candida albicans isolates from patients with human immunodeficiency virus infection. J Med Microbiol. 2005;54(Pt 6):583–93. doi:10.1099/jmm.0.45762-0.

    Article  CAS  PubMed  Google Scholar 

  25. Samaranayake YH, Dassanayake RS, Cheung BP, Jayatilake JA, Yeung KW, Yau JY, et al. Differential phospholipase gene expression by Candida albicans in artificial media and cultured human oral epithelium. APMIS. 2006;114(12):857–66. doi:10.1111/j.1600-0463.2006.apm_479.x.

    Article  CAS  PubMed  Google Scholar 

  26. Finkel JS, Mitchell AP. Genetic control of Candida albicans biofilm development. Nat Rev Microbiol. 2011;9(2):109–18. doi:10.1038/nrmicro2475.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Raad I, Costerton W, Sabharwal U, Sacilowski M, Anaissie E, Bodey GP. Ultrastructural analysis of indwelling vascular catheters: a quantitative relationship between luminal colonization and duration of placement. J Infect Dis. 1993;168(2):400–7.

    Article  CAS  PubMed  Google Scholar 

  28. Francois P, Vaudaux P, Lew PD. Role of plasma and extracellular matrix proteins in the physiopathology of foreign body infections. Ann Vasc Surg. 1998;12(1):34–40. doi:10.1007/s100169900112.

    Article  CAS  PubMed  Google Scholar 

  29. Ding X, Liu Z, Su J, Yan D. Human serum inhibits adhesion and biofilm formation in Candida albicans. BMC Microbiol. 2014;14:80. doi:10.1186/1471-2180-14-80.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Jayatilake JA, Samaranayake YH, Cheung LK, Samaranayake LP. Quantitative evaluation of tissue invasion by wild type, hyphal and SAP mutants of Candida albicans, and non-albicans Candida species in reconstituted human oral epithelium. J Oral Pathol Med. 2006;35(8):484–91. doi:10.1111/j.1600-0714.2006.00435.x.

    Article  CAS  PubMed  Google Scholar 

  31. Seneviratne CJ, Jin LJ, Samaranayake YH, Samaranayake LP. Cell density and cell aging as factors modulating antifungal resistance of Candida albicans biofilms. Antimicrob Agents Chemother. 2008;52(9):3259–66. doi:10.1128/AAC.00541-08.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Khot PD, Suci PA, Miller RL, Nelson RD, Tyler BJ. A small subpopulation of blastospores in candida albicans biofilms exhibit resistance to amphotericin B associated with differential regulation of ergosterol and beta-1,6-glucan pathway genes. Antimicrob Agents Chemother. 2006;50(11):3708–16. doi:10.1128/AAC.00997-06.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Mukherjee PK, Chandra J, Kuhn DM, Ghannoum MA. Mechanism of fluconazole resistance in Candida albicans biofilms: phase-specific role of efflux pumps and membrane sterols. Infect Immun. 2003;71(8):4333–40.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Sanglard D, Kuchler K, Ischer F, Pagani JL, Monod M, Bille J. Mechanisms of resistance to azole antifungal agents in Candida albicans isolates from AIDS patients involve specific multidrug transporters. Antimicrob Agents Chemother. 1995;39(11):2378–86.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. White TC. Increased mRNA levels of ERG16, CDR, and MDR1 correlate with increases in azole resistance in Candida albicans isolates from a patient infected with human immunodeficiency virus. Antimicrob Agents Chemother. 1997;41(7):1482–7.

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Mr. Shadow Yeung for statistical advice and Dr. Y H Samaranayake for his help with the manuscript writing. We thank Professor N. A. R. Gow (The University of Aberdeen, UK) for providing C. albicans SC5314 strain and its hyphal mutant HLC54). Two of the authors (M. H and S. V) would like to acknowledge the kind support of the Research Centre, College of Applied Medical Sciences and Deanship of Scientific Research at King Saud University.

Conflict of interest

No potential conflicts of interest were disclosed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. P. Samaranayake.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samaranayake, L.P., Anil, S., Hashem, M. et al. Human Serum Potentiates the Expression of Genes Associated with Antifungal Drug Resistance in C. albicans Biofilms on Central Venous Catheters. Mycopathologia 179, 195–204 (2015). https://doi.org/10.1007/s11046-014-9848-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-014-9848-z

Keywords

Navigation