Skip to main content
Log in

Experimental Pathogenicity of a Clinical Isolate of Trichosporon dermatis in a Murine Model

  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

The pathogenicity of Trichosporon dermatis isolated from skin lesions of a patient has been examined in mice. Balb/c mice were treated with two intraperitoneal injections of 100 mg/kg cyclophosphamide on days 4 and 1 and one subcutaneous injection of 10 mg/kg dexamethasone on day 1 pre-inoculation, and then challenged with 0.2 ml T. dermatis inoculum (1 × 108 CFU/ml) by topical application on an abrasive wound in the dermabrasive group and by hypodermic injection in the subcutaneous group. In the intravenous group, 0.2 ml of high (1 × 108 CFU/ml) or low (1 × 10CFU/ml) inoculum was injected into the tail vein. Histopathology and inverse fungal culture were performed on the skin lesion and viscera, and renal fungal burden was also determined. Inoculated sites developed localized infections after dermabrasive and subcutaneous challenge in all mice, but the maximum area of skin lesions, and number of positive cultures from the lesions, were higher for immunocompromised mice. In the intravenous group, all immunocompetent animals survived during the four-week period, whereas 100 and 70% of immunocompromised animals died by 3 and 5 days in the high and low-inoculum groups, respectively. The incidence of disseminated infection and the renal fungal burden of immunocompromised mice were higher than those of immunocompetent mice. Our results demonstrate that subcutaneous and intravenous injection of T. dermatis can successfully establish cutaneous and systemic infection models in immunocompromised mice, with the kidney and lung being most susceptible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Chagas-Neto TC, Chaves GM, Colombo AL. Update on the genus Trichosporon. Mycopathologia. 2008;166:121–32.

    Article  PubMed  Google Scholar 

  2. Chagas-Neto TC, Chaves GM, Melo AS, Colombo AL. Bloodstream infections due to Trichosporon spp.: species distribution, Trichosporon asahii genotypes determined on the basis of ribosomal DNA intergenic spacer 1 sequencing, and antifungal susceptibility testing. J Clin Microbiol. 2009;47:1074–81.

    Article  PubMed  CAS  Google Scholar 

  3. Vazquez JA. Trichosporon infection. Curr Fungal Infect Rep. 2010;4:52–8.

    Article  Google Scholar 

  4. Ruan SY, Chien JY, Hsueh PR. Invasive trichosporonosis caused by Trichosporon asahii and other unusual Trichosporon species at a medical center in Taiwan. Clin Infect Dis. 2009;49:e11–7.

    Article  PubMed  CAS  Google Scholar 

  5. Yamagata E, Kamberi P, Yamakami Y, Hashimoto A, Nasu M. Experimental model of progressive disseminated trichosporonosis in mice with latent trichosporonemia. J Clin Microbiol. 2000;38:3260–6.

    PubMed  CAS  Google Scholar 

  6. Sugita T, Takashima M, Nakase T, Ichikawa T, Ikeda R, Shinoda T. Two new yeasts, Trichosporon debeurmannianum sp. nov. and Trichosporon dermatis sp. nov., transferred from the Cryptococcus humicola complex. Int J Syst Evol Microbiol. 2001;51:1221–8.

    Article  PubMed  CAS  Google Scholar 

  7. Rodriguez-Tudela JL, Diaz-Guerra TM, Mellado E, Cano V, Tapia C, Perkins A, Gomez-Lopez A, Rodero L, Cuenca-Estrella M. Susceptibility patterns and molecular identification of Trichosporon species. Antimicrob Agents Chemother. 2005;49:4026–34.

    Article  PubMed  CAS  Google Scholar 

  8. Gunn SR, Reveles XT, Hamlington JD, Sadkowski LC, Johnson-Pais TL, Jorgensen JH. Use of DNA sequencing analysis to confirm fungemia due to Trichosporon dermatis in a pediatric patient. J Clin Microbiol. 2006;44:1175–7.

    Article  PubMed  Google Scholar 

  9. Fan YM, Huang WM, Yang YP, Li W, Li SF. Primary cutaneous trichosporonosis caused by Trichosporon dermatis in an immunocompetent man. J Am Acad Dermatol. 2011. doi: 10.1016/j.jaad.2010.01.020.

  10. Capilla J, Clemons KV, Stevens DA. Animal models: an important tool in mycology. Med Mycol. 2007;45:657–84.

    Article  PubMed  Google Scholar 

  11. Yang RY, Wang WL, Ao JH, Hao ZF, Zhang J, Wang CM. Pathogenicity of Trichosporon asahii in a murine model of disseminated trichosporonosis. Chin Med J (Engl). 2008;121:2557–60.

    Google Scholar 

  12. Yamamoto K, Makimura K, Sudo T, Shibuya K, Uchida K, Yamaguchi H. Experimental disseminated trichosporonosis in mice: tissue distribution and therapy with antifungal agents. J Med Vet Mycol. 1997;35:411–8.

    Article  PubMed  CAS  Google Scholar 

  13. Gokaslan A, Anaissie E. A novel murine model of disseminated trichosporonosis. Infect Immun. 1992;60:3339–44.

    PubMed  CAS  Google Scholar 

  14. Hospenthal D, Belay T, Lappin P, Rogers A, Kennedy M. Disseminated trichosporonosis in a neutropenic murine model. Mycopathologia. 1993;122:115–22.

    Article  PubMed  CAS  Google Scholar 

  15. Sasaki E, Tashiro T, Kuroki M, Seki M, Miyazaki Y, Maesaki S, Tomono K, Kadota J, Kohno S. Effects of macrophage colony-stimulating factor (M-CSF) on anti-fungal activity of mononuclear phagocytes against Trichosporon asahii. Clin Exp Immunol. 2000;119:293–8.

    Article  PubMed  CAS  Google Scholar 

  16. Muranaka H, Suga M, Nakagawa K, Sato K, Gushima Y, Ando M. Effects of granulocyte and granulocyte-macrophage colony-stimulating factors in a neutropenic murine model of trichosporonosis. Infect Immun. 1997;65:3422–9.

    PubMed  CAS  Google Scholar 

  17. Serena C, Pastor FJ, Gilgado F, Mayayo E, Guarro J. Efficacy of micafungin in combination with other drugs in a murine model of disseminated trichosporonosis. Antimicrob Agents Chemother. 2005;49:497–502.

    Article  PubMed  CAS  Google Scholar 

  18. Kamberi P, Atsuro H, Takayoshi T, Masaru N. Efficacy of amphotericin B and azoles alone and in combination against disseminated trichosporonosis in neutropenic mice. Chemotherapy. 1998;44:55–62.

    Article  PubMed  CAS  Google Scholar 

  19. Anaissie EJ, Hachem R, Karyotakis NC, Gokaslan A, Dignani MC, Stephens LC, Tin-U CK. Comparative efficacies of amphotericin B, triazoles, and combination of both as experimental therapy for murine trichosporonosis. Antimicrob Agents Chemother. 1994;38:2541–4.

    PubMed  CAS  Google Scholar 

  20. Huyan XH, Lin YP, Gao T, Chen RY, Fan YM. Immunosuppressive effect of cyclophosphamide on white blood cells and lymphocyte subpopulations from peripheral blood of Balb/c mice. Int Immunopharmacol. 2011. doi:10.1016/j.intimp. 2011.04.011.

  21. Lionakis MS, Kontoyiannis DP. Glucocorticoids and invasive fungal infections. Lancet. 2003;362:1828–38.

    Article  PubMed  CAS  Google Scholar 

  22. Arruda C, Kashino SS, Fazioli RA, Calich VL. A primary subcutaneous infection with Paracoccidioides brasiliensis leads to immunoprotection or exacerbated disease depending on the route of challenge. Microbes Infect. 2007;9:308–16.

    Article  PubMed  CAS  Google Scholar 

  23. Spellberg B, Ibrahim AS, Edwards JE Jr, Filler SG. Mice with disseminated candidiasis die of progressive sepsis. J Infect Dis. 2005;192:336–43.

    Article  PubMed  Google Scholar 

  24. Allendoerfer R, Magee DM, Smith JG, Bonewald L, Graybill JR. Induction of tumor necrosis factor-alpha in murine Candida albicans infection. J Infect Dis. 1993;167:1168–72.

    Article  PubMed  CAS  Google Scholar 

  25. Miller TA, Schaefer FW III. Methylprednisolone acetate immune suppression produces differing effects on Cryptosporidium muris oocyst production depending on when administered. Vet Parasitol. 2007;149:77–84.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Ming Fan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11046_2011_9442_MOESM1_ESM.jpg

Online Resource 1 Pulmonary pathological findings in an immunocompromised mouse sacrificed on day 5 post inoculation in low inoculum intravenous group: a, HE stain showing hyperemia, edema, focal hemorrhage, granulomatous inflammation, and compensatory alveolar ectasia; b, PAS stain showing grouped hyphae and spores (black arrows). (JPEG 9498 kb)

11046_2011_9442_MOESM2_ESM.jpg

Online Resource 2 Renal pathological findings in an immunocompromised mouse sacrificed on day 5 post inoculation in low inoculum intravenous group: a, HE stain showing hyperemia, tubular edema, mild inflammation, and focal parenchymal destruction and suspected fungal elements (black arrows); b, PAS stain showing clustered hyphae and spores (black arrows). (JPEG 9890 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, YP., Yang, YP., Huang, WM. et al. Experimental Pathogenicity of a Clinical Isolate of Trichosporon dermatis in a Murine Model. Mycopathologia 172, 381–387 (2011). https://doi.org/10.1007/s11046-011-9442-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-011-9442-6

Keywords

Navigation