Skip to main content

Advertisement

Log in

Adhesive Properties and Hydrolytic Enzymes of Oral Candida albicans Strains

  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

Several virulence factors in Candida albicans strains such as production of hydrolytic enzymes and biofilm formation on surfaces and cells can contribute to their pathogenicity. For this, control of this opportunistic yeast is one of the factors reducing the nosocomial infection. The aim of this study was to investigate biofilm formation on polystyrene and polymethylmethacrylate and the production of hydrolytic enzymes in Candida albicans strains isolated from the oral cavity of patients suffering from denture stomatitis. All strains were identified by macroscopic, microscopic analysis and the ID 32 C system. Our results showed that 50% of the total strains produced phospholipase. Furthermore, protease activity was detected in seven (35%) strains. All Candida albicans strains were beta haemolytic. All C. albicans strains adhered to polystyrene 96-well microtiter plate at different degrees, and the metabolic activity of C. albicans biofilm formed on polymethylmethacrylate did not differ between tested strains. The atomic force micrographs demonstrated that biofilm of Candida albicans strains was organized in small colonies with budding cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Calderone RA, Fonzi WA. Virulence factors of Candida albicans. Trends Microbiol. 2001;9:327–50.

    Article  CAS  PubMed  Google Scholar 

  2. Nikawa H, Hamada T, Yamamoto T. Denture plaque-past and recent concerns. J Dent. 1998;26:299–304.

    Article  CAS  PubMed  Google Scholar 

  3. Webb BC, Thomas CJ, Willcox MD, Harty DW, Knox KW. Candida-associated denture stomatitis. Aetiology and management: a review. Part 2. Oral diseases caused by Candida species. Aust Dent J. 1998;43:160–6.

    Article  CAS  PubMed  Google Scholar 

  4. Budtz-Jorgensen E, Stenderup A, Grabowski M. An epidemiologic study of yeasts in elderly denture wearers. Community Dent Oral Epidemiol. 1975;3:115–9.

    Article  CAS  PubMed  Google Scholar 

  5. Cannon RD, Chaffin WL. Oral colonization by Candida albicans. Crit Rev Oral Biol Med. 1999;10:359–83.

    Article  CAS  PubMed  Google Scholar 

  6. Ghannoum M. Potential role of phospholipases in virulence and fungal pathogenesis. Clin Microbiol Rev. 2000;13:122–43.

    Article  CAS  PubMed  Google Scholar 

  7. Neugnot V, Moulin G, Dubreucq E, Bigey F. The lipase/acyltransferase from Candida parapsilosis: molecular cloning and characterization of purified recombinant enzymes. Eur J Biochem. 2002;269:1734–45.

    Article  CAS  PubMed  Google Scholar 

  8. Ibrahim AS, Mirbod F, Filler SG. Evidence implicating phospholipase as a virulence factor of Candida albicans. Infect Immun. 1995;63:1993–8.

    CAS  PubMed  Google Scholar 

  9. Stehr F, Kretschmar M, Kroger C, Hube B, Schafer W. Microbial lipases as virulence factor. J Mol Catal. 2003;22:347–55.

    Article  CAS  Google Scholar 

  10. Cassone A, De Bernardis F, Mondello F, Ceddia T, Agatensi L. Evidence for a correlation between proteinase secretion and vulvovaginal candidosis. J Infect Dis. 1987;156:777–83.

    CAS  PubMed  Google Scholar 

  11. Luo G, Samaranayake LP, Yau JY. Candida species exhibit differential in vitro hemolytic activities. J Clin Microbio. 2001;39:2971–4.

    Article  CAS  Google Scholar 

  12. Gristina AG, Giridhar G, Gabriel BL. Cell biology and molecular mechanisms in artificial device infections. Int J Artif Organs. 1993;16:755–63.

    CAS  PubMed  Google Scholar 

  13. Cannon RD, Chaffin WL. Oral colonization by Candida albicans. Crit Rev Oral Biol Med. 1999;10:359–83.

    Article  CAS  PubMed  Google Scholar 

  14. Goldmann DA, Pier GB. Pathogenesis of infections related to intravascular catheterization. Clin Microbiol Rev. 1993;6:176–92.

    CAS  PubMed  Google Scholar 

  15. Ramage G, Tomsett K, Wickes BL, Lopez-Ribot JL, Redding SW. Denture stomatitis: a role for Candida biofilms. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2004;98:53–9.

    Article  PubMed  Google Scholar 

  16. Avon SL, Goulet JP, Deslauriers N. Removable acrylic resin disk as a sampling system for the study of denture biofilms in vivo. J Prosthet Dent. 2007;97:32–8.

    Article  CAS  PubMed  Google Scholar 

  17. Serrano-Granger R, Campo-Trapero J, Del Río-Highsmith J. In vitro study of the adherence of Candida albicans to acrylic resins: relationship to surface energy. Int J Prosthodont. 2005;18:392–8.

    PubMed  Google Scholar 

  18. Moura JS, Silva WJ, Pereira T, Del Bel Cury AA, Rodrigues Garcia RC. Influence of acrylic resin polymerization methods and saliva on the adherence of four Candida species. J Prosthet Dent. 2006;96:205–11.

    Article  CAS  PubMed  Google Scholar 

  19. Pereira-Cenci T, Cury AA, Cenci MS, Rodrigues-Garcia RC. In vitro Candida colonization on acrylic resins and denture liners: influence of surface free energy, roughness, saliva, and adhering bacteria. Int J Prosthodont. 2007;20:308–10.

    PubMed  Google Scholar 

  20. Busscher HJ, Cowan MM, van der Mei HC. On the relative importance of specific and non-specific approaches to oral microbial adhesion. FEMS Microbiol Rev. 1992;8:199–209.

    CAS  PubMed  Google Scholar 

  21. Verheyen CC, Dhert WJ, De Blieck-Hogervorst JM, van der Reijden TJ, Petit PL, de Groot K. Adherence to a metal, polymer and composite by Staphylococcus aureus and Staphylococcus epidermidis. Biomaterials. 1993;14:383–91.

    Article  CAS  PubMed  Google Scholar 

  22. Waltimo T, Tanner J, Vallittu P, Haapasalo M. Adherence of Candida albicans to the surface of polymethylmethacrylate- E glass fiber composite used in dentures. Int J Prosthodont. 1999;12:83–6.

    CAS  PubMed  Google Scholar 

  23. Baquero C, Montero M, Sentandreu R, Valentin E. Identification of Candida albicans by polymerase chain reaction amplification of a CaYST1 gene intron fragment. Rev Iberoam Micol. 2002;19:80–3.

    PubMed  Google Scholar 

  24. Ausubel FM, Brent R, Kingston RE. Current protocols in molecular biology. New York, John Wiley and sons; 1996, 2:13.11.1–13.13.8.

  25. Price MF, Wilkinson ID, Gentry LO. Plate method for detection of phospholipase activity in Candida albicans. Sabouraudia. 1982;20:7–14.

    CAS  PubMed  Google Scholar 

  26. Aoki S, Ito-Kuwa S, Nakamura Y, Masuhara T. Comparative pathogenicity of wild-type strains and respiratory mutants of Candida albicans in mice. Zol Bakt. 1990;273:332–43.

    CAS  Google Scholar 

  27. Manns JM, Mosser DM, Buckley HR. Production of a hemolytic factor by Candida albicans. Infect Immun. 1994;62:5154–6.

    CAS  PubMed  Google Scholar 

  28. Kuhn DM, Chandra J, Mukherjee PK, Ghannoum MA. Comparison of biofilms formed by Candida albicans and Candida parapsilosis on bioprosthetic surfaces. Infect Immun. 2002;70:878–88.

    Article  CAS  PubMed  Google Scholar 

  29. Melo ASA, Padovan ACB, Serafim RC, Puzer L, Carmona AK, Juliano Neto L, et al. The Candida albicans AAA ATPase homologue of Saccharomyces cerevisiae Rix7p (YLL034c) is essential for proper morphology, biofilm formation and activity of secreted aspartylproteinases. Genet Mol Res. 2006;5:664–87.

    CAS  PubMed  Google Scholar 

  30. Samaranayake LP, MacFarlane TW. An in vitro study of the adherence of Candida albicans to acrylic surfaces. Arch Oral Biol. 1980;25:603–6.

    Article  CAS  PubMed  Google Scholar 

  31. Chandra J, Mukherjee PK, Leidich SD, Faddoul FF, Hoyer LL, Douglas LJ, et al. Antifungal resistance of candidal biofilms formed on denture acrylic in vitro. J Dent Res. 2001;80:903–8.

    Article  CAS  PubMed  Google Scholar 

  32. Braga PC, Ricci D. Atomic force microscopy: application to investigation of Escherichia coli morphology before and after exposure to cefodizime. Antimicrob Agents Chemother. 1998;42:18–22.

    CAS  PubMed  Google Scholar 

  33. Cardenes-Pereraa CD, Torres-Lanaab A, Alonso-Vargasc R, Moragues-Tosantasc MD, Ponton-San Emeterioc J, Quindos-Andres G, et al. Evaluation of API ID 32C® and VITEK-2® to identify Candida dubliniensis. Diag Microbiol and Infect Dis. 2004;50:219–21.

    Article  Google Scholar 

  34. Oliveira EE, Silva SC, Soares AJ, Attux C, Cruvinel B, Silva MRR, et al. Killer toxin and enzyme production by Candida albicans isolated from buccal mucosa in-patients with cancer. Rev Soc Bras Med Trop. 1998;31:523–7.

    Article  PubMed  Google Scholar 

  35. Samaranayake LP, Reaside JM, Macfarlane TW. Factors affecting the phospholipase activity of Candida species in vitro. J Med Veter Mycol. 1984;22:201–7.

    Article  CAS  Google Scholar 

  36. Bosco VL, Birman EG, Cury AE, Paula CR. Yeasts from the oral cavity of children with AIDS: exoenzyme production and antifungal resistance. Pesqui Odontol Bras. 2003;17:217–22.

    Article  PubMed  Google Scholar 

  37. Candido RC, Azevedo RVP, Komesu MC. Enzimotipagem de espécies de Candida isoladas da cavidade bucal. Rev Soc Bras Med Trop. 2000;33:437–42.

    Article  CAS  PubMed  Google Scholar 

  38. Kretchmar M, Hube B, Bertsch T, et al. Germ tubes and proteinase activity contribute to virulence of Candida albicans in murine peritonitis. Infect Immun. 1999;67:6637–42.

    Google Scholar 

  39. Baillie GS, Douglas LJ. Role of dimorphism in the development of Candida albicans species and biofilms. J Med Microbiol. 1999;48:671–9.

    Article  CAS  PubMed  Google Scholar 

  40. Jin Y, Samaranayake LP, Samaranayake Y, Yip HK. Biofilm formation of Candida albicans is variably affected by saliva and dietary sugars. Arch Oral Biol. 2004;49:789–98.

    Article  CAS  PubMed  Google Scholar 

  41. Critchley IA, Douglas LJ. Differential adhesion of pathogenic Candida species to epithelial and inert surfaces. FEMS Microbiol Lett. 1985;28:199–203.

    Article  CAS  Google Scholar 

  42. Edgerton M, Scannapieco FA, Reddy MS, Levine MJ. Human submandibular-sublingual saliva promotes adhesion of Candida albicans to polymethylmethacrylate. Infect Immun. 1993;61:2644–52.

    CAS  PubMed  Google Scholar 

  43. He XY, Meurman JH, Kari K, Rautemaa R, Samaranayake LP. In vitro adhesion of Candida species to denture base materials. Mycoses. 2006;49:80–4.

    Article  CAS  PubMed  Google Scholar 

  44. Biswas SK, Chaffin WL. Anaerobic growth of Candida albicans does not support biofilm formation under similar conditions used for aerobic biofilm. Curr Microbiol. 2005;51:100–4.

    Article  CAS  PubMed  Google Scholar 

  45. Bulad K, Taylor RL, Verran J, McCord JF. Colonization and penetration of denture soft lining materials by C. albicans. Dent Mat. 2004;20:167–75.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge Prof. Stefania Zanetti (University of Sassari, Italy) for standard Candida albicans strains and Mr. Moez Abroud from the Centre de Recherche Technologique de Borj Cédria (Tunisia), for technical assistance with the AFM technique.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emira Noumi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noumi, E., Snoussi, M., Hentati, H. et al. Adhesive Properties and Hydrolytic Enzymes of Oral Candida albicans Strains. Mycopathologia 169, 269–278 (2010). https://doi.org/10.1007/s11046-009-9259-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-009-9259-8

Keywords

Navigation