Skip to main content
Log in

Involvement of Ca2+ Channel Signalling in Sclerotial Formation of Polyporus umbellatus

  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

Growth and morphogenesis transformation in Polyporus umbellatus were examined in the presence of various pharmacological compounds, to investigate signal transduction pathways that influence the development of sclerotia. Both the calcium channel blocker nifedipine and the calcium ionophor A23187 reduced sclerotial production in P. umbellatus; four classes of Ca2+ signal agent—including calcium chelators, calcium channel blockers, calcium ionophors and calmodulin inhibitors—were further studied. Among them, EGTA and BAPTA, as calcium chelators, exhibited a complete inhibitory effect on sclerotial formation, among the levels tested. Calcium channel blockers and calcium ionophors at the concentrations used in this study could not eliminate sclerotia formation completely, but did greatly reduce sclerotial production. Notoginsenoside in dosages >250 μg/ml produced a significant negative effect on mycelial growth, and it prevented sclerotial formation entirely at a dosage of 500 μg/ml; no other drug influenced vegetative growth at all. The calcium ionophor A23187 did not decrease sclerotial mean weight at low doses (20 nM); at higher doses (200 nM), however, sclerotial development was significantly reduced, albeit not completely halted. The CaM inhibitors (W-7 and chlorpromazine) could each completely stop sclerotial formation. Using Fluo-3/AM as the indicator of cytosolic free calcium, the Ca2+ content in the cytoplasm was found to have decreased significantly when hyphae were treated with different drugs, and there was no active Ca2+ signal in the sclerotial mycelium. In general, the results suggest that Ca2+ signal transduction may play an important role in sclerotial formation in P. umbellatus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Xu JT. Chinese medicinal fungi. 1st ed. Beijing: Peking Union Medical College; 1997.

    Google Scholar 

  2. Miyazaki T, Oikawa N. Studies on fungal polysaccharide. VII. Water-soluble polysaccharide of Grifola (Fr.) Pilat. Chem Pharm Bull. 1973;21:2545–8.

    CAS  Google Scholar 

  3. Miyazaki T, Oikawa N, Yamada H, Yadomae T. Structural examination of antitumor, water-soluble glucans from Grifola umbellata by use of four type glucanase. Carbohydr Res. 1978;65:235–43.

    Article  CAS  PubMed  Google Scholar 

  4. Miyazaki T, Oikawa N, Yamada H, Yamada Y, Hsu H, et al. Relationship between the chemical structure and antitumor activity of glucans prepared from Grifola umbellate. Carbohydr Res. 1979;69:165–70.

    Article  CAS  PubMed  Google Scholar 

  5. Ueno Y, Okamoto Y, Yamauchi R, Kato K. An antitumor activity of the alkali-soluble polysaccharide (and its derivatives) obtained from the sclerotia of Grifola umbellata (Fr.) Pilat. Carbohydr Res. 1982;101:160–7.

    Article  CAS  PubMed  Google Scholar 

  6. You JS, Hau DM, Chen KT, Huang HF. Combined effects of Zhuling (Polyporus umbellatus) extract and mitomycin C on experimental liver cancer. Am J Chin Med. 1994;22:19–28.

    Article  CAS  PubMed  Google Scholar 

  7. Wang QY, Guo SY, Fan JY, Xue M. Characterization of Sclerotial Formation from Hyphae of Grifola umbellata. Acta Bot Sin. 2004;46:328–31.

    Google Scholar 

  8. Choi KD, Lee KT, Ban KW, Son SG, Shim JO, Lee SS, et al. The culture conditions of Grifola umbellata. J Anhui Agric Univ. 1999;26:292–9.

    Google Scholar 

  9. Guo SX, Xu JT. Nutrient source of sclerotia of Grifola umbellata and its relationship to Armillaria mellea. Acta Bot Sin. 1991;34:576–80.

    Google Scholar 

  10. Guo SX, Xu JT. Origin and development of crystal and thick-walled cells in sclerotia of Grifola umbellate. Acta Mycol Sin. 1992;11:49–54.

    Google Scholar 

  11. Guo SX, Xu JT. Genesis and function of defense structure of Grifola umbellata after Armillaria mellea infection. Acta Mycol Sin. 1993;12:283–8.

    Google Scholar 

  12. Bishop CD, Erezyilmaz DF, Flatt T, Georgiou CD, Hadfield MG, Heyland A, et al. What is metamorphosis. Integr Comp Biol. 2006;46:655–61.

    Article  Google Scholar 

  13. Georgiou DC. Lipid peroxidation in Sclerotium rolfsii: a new look into the mechanism of sclerotial biogenesis in fungi. Mycol Res. 1997;101:460–4.

    Article  CAS  Google Scholar 

  14. Abo Ellil AHA. Oxidative stress in relation to lipid peroxidation, sclerotial development and melanin production by sclerotium rolfsii. J Phytopathol. 1999;147:562–6.

    Google Scholar 

  15. Georgiou DC, Patsoukis N, Papapostolou I, Zervoudakis G. Sclerotial metamorphosis in filamentous fungi is induced by oxidative stress. Integr Comp Biol. 2006;46:691–712.

    Article  CAS  Google Scholar 

  16. Chen DY, Lai HX, Lin YB. The investigation on mycelial growth and sclerotial formation of Polyporus umbellatus. Edible Fungi. 2004;6:8–9.

    Google Scholar 

  17. Gao S, Nuss DL. Distinct roles for two G protein a subunits in fungal virulence, morphology and reproduction revealed by targeted gene disruption. Proc Nat Acad Sci USA. 1996;93:14122–7.

    Article  CAS  PubMed  Google Scholar 

  18. Ruan Y, Kotraiah V, Straney DC. Flavonoids stimulate spore germination in Fusarium solani pathogenic on legumes in a manner sensitive to inhibitors of cAMP-dependent protein kinase. Mol Plant Microbe Interact. 1995;8:929–38.

    CAS  Google Scholar 

  19. Warwar V, Dickman MB. Effects of calcium and calmodulin on spore germination and appressorium development in Colletotrichum trifolii. Appl Environ Microbiol. 1996;62:74–9.

    CAS  PubMed  Google Scholar 

  20. Hoch HC, Staples RC. Evidence that cAMP initiates nuclear division and infection structure formation in the bean rust fungus, Uromyces phaseoli. Exp Mycol. 1984;8:37–46.

    Article  CAS  Google Scholar 

  21. Mitchell TK, Dean RA. The cAMP-dependent protein kinase catalytic subunit is required for appressorium formation and pathogenesis by the rice blast pathogen Magnaporthe grisea. Plant Cell. 1995;7:1869–78.

    Article  CAS  PubMed  Google Scholar 

  22. Xu JR, Hamer JE. MAP kinase and cAMP signaling regulate infection structure formation and pathogenic growth in the rice blast fungus Magnaporthe grisea. Gene Dev. 1996;10:2696–706.

    Article  CAS  PubMed  Google Scholar 

  23. Xu JR, Urban M, Sweigard JA, Hamer JE. The CPKA gene of Magnaporthe grisea is essential for appressorial penetration. Mol Plant Microbe Interact. 1997;10:187–94.

    Article  CAS  Google Scholar 

  24. Yang Z, Dickman MB. Regulation of cAMP and cAMP dependent protein kinase during conidial germination and appressorium formation in Colletotrichum trifolii. Physiol Mol Plant Pathol. 1997;50:117–27.

    Article  CAS  Google Scholar 

  25. Bolker M, Urban M, Kahmann R. The a mating type locus of U. maydis specifies cell signalling components. Cell. 1992;68:441–50.

    Article  CAS  PubMed  Google Scholar 

  26. Choi GH, Chen B, Nuss DL. Virus-mediated or transgenic suppression of a G-protein a subunit and attenuation of fungal virulence. Proc Nat Acad Sci USA. 1995;92:305–9.

    Article  CAS  PubMed  Google Scholar 

  27. Gao S, Duncan G, Barret K, Kronstad J. cAMP regulates morphogenesis in the fungal pathogen Ustilago maydis. Gene Dev. 1994;8:2805–16.

    Article  Google Scholar 

  28. Regenfelder E, Spellig T, Hartmann A, Lauenstein S, Bolker M, Kahmann R. G proteins in Ustilago maydis: transmission of multiple signals? EMBO J. 1997;16:1934–42.

    Article  CAS  PubMed  Google Scholar 

  29. Robson GD, Wiebe MG, Trinci APJ. Exogenous cAMP and cGMP modulate branching in Fusarium graminearum. J Gen Microbiol. 1991;137:963–9.

    CAS  PubMed  Google Scholar 

  30. Gadd GM. Signal transduction in fungi. In: Gow NAR, Gadd GM, editors. The growing fungus. London: Chapman & Hall; 1994. p. 183–210.

    Chapter  Google Scholar 

  31. Sanders D, Pelloux J, Brownlee C, Harper JF. Calcium at the crossroads of signaling. Plant Cell. 2001;14:S401–17.

    Google Scholar 

  32. Berridge MJ, Bootman MD, Roderick HL. Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol. 2003;4:517–29.

    Article  CAS  PubMed  Google Scholar 

  33. Hyde GJ, Heath IB. Ca2+ gradients in hyphae and branches of Saprolegnia ferax. Fungal Genet Biol. 1997;21:238–51.

    Article  CAS  Google Scholar 

  34. Kim Y, Li D, Kolattukudy PE. Induction of Ca2+-calmodulin signaling by hard-surface contact primes Colletotrichum gloeosporioides conidia to germinate and form appressoria. J Bacteriol. 1998;180:5144–50.

    CAS  PubMed  Google Scholar 

  35. Chung K-R. Involvement of calcium/calmodulin signaling in cercosporin toxin biosynthesis by Cercospora nicotianae. Appl Environ Microbiol. 2003;69:1187–96.

    Article  CAS  PubMed  Google Scholar 

  36. Praveen Rao J, Subramanyam C. Requirement of Ca2+ for aflatoxin production: inhibitory effect of Ca2+ channel blockers of aflatoxin production by Aspergillus parasiticus NRRL 2999. Lett Appl Microbiol. 1999;28:85–8.

    Article  CAS  PubMed  Google Scholar 

  37. Spedding MS, Paoletti R. Classification of calcium channel and sites of drugs modifying channels function. Pharmacol Rev. 1992;44:363–5.

    CAS  PubMed  Google Scholar 

  38. Liu JH, Ji FY, Wang T, Xie XD, Yao B. Effect of notoginsenosiole on Ca2+, excitory amino acid content in rat brain of cerebral ischemia and reperfusion. Chin J Clin Pharmacol Ther. 2002;7:33–4.

    Google Scholar 

  39. Yuan WY, Ye QF, Jiang WQ, Jiang WL, Shen RS. Elimination of oxygen free radicals in rat liver mitochondria by total saponins of panax notoginseng during ischemia reperfusion. Chin J Mod Med. 2005;20:3076–8.

    Google Scholar 

  40. Tester M. Plant ion channels: whole-cell and single-channel studies. New Phytol. 1990;114:305–40.

    Article  Google Scholar 

  41. Bush SD. Calcium regulation in plant cells and its role in signaling. Annu Rev Plant Physiol Mol Biol. 1995;46:95–122.

    Article  CAS  Google Scholar 

  42. Belyavskaya NA. Calcium and graviperception in plants inhibitor analysis. Int Rev Cytol. 1996;168:123–85.

    Article  CAS  Google Scholar 

  43. Zhang WH, Rengel Z. Aluminium induces an increase in cytoplasmic calcium in intact wheat root apical cells. Aust J Plant Physiol. 1999;26:401–9.

    Article  CAS  Google Scholar 

  44. Zhang WH, Rengel Z, Kuo J. Determination of intracellular Ca2+ in cells of intact wheat roots: loading of acetoxymethyl ester of Fluo-3 under low temperature. Plant J. 1998;15:147–51.

    Article  Google Scholar 

Download references

Acknowledgments

Financial supports from the key programme of the National Natural Science Foundation of China (No. 30830117).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shun-Xing Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, YY., Guo, SX. Involvement of Ca2+ Channel Signalling in Sclerotial Formation of Polyporus umbellatus . Mycopathologia 169, 139–150 (2010). https://doi.org/10.1007/s11046-009-9238-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-009-9238-0

Keywords

Navigation