Skip to main content
Log in

An Oxidized Ergosterol from Pleurotus cystidiosus Active Against Anthracnose Causing Colletotrichum gloeosporioides

  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

This study was undertaken to study the antifungal activity of Pleurotus cystidiosus against Colletotrichum gloeosporioides. This was achieved by fractionating the mushroom, P. cystidiosus initially to acetone (A), dichloromethane (D), and hexane (H) and studying the antifungal activity using the standard poisoned food technique. All the test solutions used were in the concentration of 20,000 ppm. The percentage inhibition of extracts A, D, and H was 12, 7, and 0.4%, respectively. Antifungal assay guided fractionation of the most active extract A resulted in four fractions; A1, A2, A3, and A4 having 12, 22, 0, and 17% percentage inhibitions, respectively. Fractions A2 and A4 were selected for further purifications. Normal phase column chromatography of A2 gave A2-1, A2-2, A2-3, and A2-4, with percentage inhibitions 7, 5, 26, and 13%, respectively. The fraction with the highest inhibitory activity (A2-3) was further separated using the Chromatotron and a single compound (A2-3-13) with 41% inhibition was isolated. Structure elucidation of this compound using 1D and 2D NMR spectroscopy proved this compound to be 3β, 5α, 6β-trihydroxyergosta-7,22-diene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jayasinghe CK, Fernando THPS, Priyanka UMS. Colletotrichum acutatum is the main cause of Colletotrichum leaf disease of rubber in Sri Lanka. Mycopathologia. 1997;137:53–6. doi:10.1023/A:1006850119146.

    Article  PubMed  CAS  Google Scholar 

  2. Jayasinghe CK, Fernando THPS. Growth at different temperatures and on fungicide amended media: two characteristics to distinguish Colletotrichum species pathogenic to rubber. Mycopathologia. 1998;143:93–5. doi:10.1023/A:1006958623733.

    Article  PubMed  CAS  Google Scholar 

  3. Dickman MB, Alvarez AM. Latent infection of papaya caused by Colletotrichum gloeosporioides. Plant Dis. 1983;67:748–50. doi:10.1094/PD-67-748.

    Article  Google Scholar 

  4. Prusky D, Keen NT. Involvement of preformed antifungal compounds in the resistance of subtropical fruits to fungal decay. Plant Dis. 1993;7:114–9.

    Google Scholar 

  5. Stadler M, Sterner O. Production of bioactive secondary metabolites in the fruit bodies of macrofungi as response to injury. Phytochemistry. 1998;49(4):1013–9. doi:10.1016/S0031-9422(97)00800-5.

    Article  CAS  Google Scholar 

  6. Florianowicz T. Inhibition of growth and sporulation of Penicillium expansum by extracts of selected basidiomycetes. Acta Soc Bot Pol. 2000;69(4):263–7.

    Google Scholar 

  7. Lam SK, Ng TB. First simultaneous isolation of a ribosome inactivating protein and an antifungal protein from a mushroom (Lyophyllum shimeji) together with evidence for synergism of their antifungal effects. Arch Biochem Biophys. 2001;392(2):271–80. doi:10.1006/abbi.2001.2506.

    Article  CAS  Google Scholar 

  8. Wang H, Ng TB. Eryngin, a novel antifungal peptide from fruiting bodies of the edible mushroom Pleurotus eryngii. Peptides. 2004;25:1–5. doi:10.1016/j.peptides.2003.11.014.

    Article  PubMed  CAS  Google Scholar 

  9. Chu KT, Xia L, Ng TB. Pleurostrin, an antifungal peptide from the oyster mushroom. Peptides. 2005;26(11):2098–103. doi:10.1016/j.peptides.2005.04.010.

    Article  PubMed  CAS  Google Scholar 

  10. Sebastian E, Nidiry J. Structure–fungitoxicity relationships of some volatile flavour constituents of the edible mushrooms Agaricus bisporus and Pleurotus florida. Flavour Fragr J. 2001;16(4):245–8. doi:10.1002/ffj.987.

    Article  Google Scholar 

  11. Iwalokun BA, Usen UA, Otunba AA, Olukoya DK. Comparative phytochemical evaluation, antimicrobial and antioxidant properties of Pleurotus ostreatus. Afr J Biotechnol. 2007;6(15):1732–9.

    CAS  Google Scholar 

  12. Guardia ML, Venturella G, Venturella F. On the chemical composition and nutritive value of Pleurotus taxa growing on Umbelliferous plants (Apiaceae). J Agric Food Chem. 2005;53:5997–6002. doi:10.1021/jf0307696.

    Article  PubMed  CAS  Google Scholar 

  13. Ruiz-Duenas FJ, Martinez MJ. Enzymatic activities of Trametes versicolor and Pleurotus eryngii implicated in biocontrol of Fusarium oxysporum f. sp. Lycopersici. Curr Microbiol. 1996;32(3):151–5. doi:10.1007/s002849900027.

    Article  CAS  Google Scholar 

  14. El-Fallal AA, Moussa Z. Prospects for biocontrol of brown rot disease of potato in vitro and under greenhouse conditions. Plant Pathol J. 2008;7(1):54–64.

    Article  Google Scholar 

  15. Bean GA. Phytosterols. Adv Lipid Res. 1973;11:193–218.

    CAS  Google Scholar 

  16. Brennan PJ, Griffin PFS, Lösel DM, Tyrrel D. The lipids of fungi. Prog Chem Fats Other Lipids. 1974;14:51–89.

    Google Scholar 

  17. Hossack JA, Rose AH. Fragility of plasma membranes in Saccharomyces cerevisiae enriched with different sterols. J Bacteriol. 1976;127(1):67–75.

    PubMed  CAS  Google Scholar 

  18. Lu H, Zou WX, Meng JC, Hu J, Tan RX. New bioactive metabolites produced by Colletotrichum sp., an endophytic fungus in Artemisia annua. Plant Sci. 2000;151(1):67–73. doi:10.1016/S0168-9452(99)00199-5.

    Article  CAS  Google Scholar 

  19. Ye YH, Zhu HL, Song YC, Liu JY, Tan RX. Structural revision of aspernigrin A, re-isolated from Cladosporium herbarum IFB-E002. J Nat Prod. 2005;68(7):1106–8. doi:10.1021/np050059p.

    Article  PubMed  CAS  Google Scholar 

  20. Li HJ, Lin YC, Vrijmoed LLP, Jones EBG. A new cytotoxic sterol produced by an endophytic fungus from Castaniopsis fissa at the South China sea coast. Chin Chem Lett. 2004;15(4):419–22.

    CAS  Google Scholar 

  21. Koyama K, Akiba M, Imaizumi T, Kinoshita K, Takahashi K, Suzuki A, et al. Antinociceptive constituents of Auricularia polytricha. Planta Med. 2002;68(3):284–5. doi:10.1055/s-2002-23141.

    Article  PubMed  CAS  Google Scholar 

  22. Böcking T, Barrow KD, Netting AG, Chilcott TC, Coster HGL, Höfer M. Effects of singlet oxygen on membrane sterols in the yeast Saccharomyces cerevisiae. Eur J Biochem. 2000;267:1607–18. doi:10.1046/j.1432-1327.2000.01179.x.

    Article  PubMed  Google Scholar 

  23. Thomas AH. Suggested mechanisms for the antimycotic activity of the polyene antibiotics and the N-substituted imidazoles. J Antimicrob Chemother. 1986;17:269–79. doi:10.1093/jac/17.3.269.

    Article  PubMed  CAS  Google Scholar 

  24. Zygmunt WA, Tavormina PA. Steroid interference with antifungal activity of polyene antibiotics. Appl Environ Microbiol. 1966;14(6):865–9.

    CAS  Google Scholar 

  25. Perera WASW, Abeytunga DTU, Wijesundera RLC. Anti-bacterial activities of Volvariella volvacea. J Natl Sci Found Sri Lanka. 2001;29(1&2):61–8.

    Google Scholar 

Download references

Acknowledgments

We acknowledge the financial support form NSF grant RG/2004/C/2 (funds for consumables and research assistant) and for TWAS grant 05-328 RG/CHE/AS (2006) for purchasing the Chromatotron. We also acknowledge the technical support given by Ms. Nilakshi Silva, Dept. of Plant Science, University of Colombo in conducting the bioassays.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. T. U. Abeytunga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Menikpurage, I.P., Abeytunga, D.T.U., Jacobsen, N.E. et al. An Oxidized Ergosterol from Pleurotus cystidiosus Active Against Anthracnose Causing Colletotrichum gloeosporioides . Mycopathologia 167, 155–162 (2009). https://doi.org/10.1007/s11046-008-9158-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-008-9158-4

Keywords

Navigation