Skip to main content
Log in

Coherent wide-band signals DOA estimation by the new CTOPS algorithm

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

Direction of arrival estimation is one of the most important issues in array signals processing. In this paper, a new method is presented for direction estimation of coherent wide-band signals. First of all, signal eigenvalues which have information of the direction of coherent signals, are extracted as primary vectors in each frequency bin. Afterwards, by constructing the innovative matrix H from signal eigenvalues, the de-correlation process is performed and the linear independent vectors of sources are extracted from SVD decomposition. Finally, by choosing transfer matrix, the signal subspace of the reference frequency is transferred to other frequency bins and the direction estimation process is performed by using TOPS algorithm. The proposed method does not need any knowledge of the number of sources and initial estimation of arrival angles. According to the simulation results, the CTOPS new method has a better performance than TOPS method in the presence of correlated sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Direction of arrival.

  2. Incoherent MUSIC.

References

  • Ahmad, Z., Song, Y., & Du, Q. (2018). Wideband DOA estimation based on incoherent signal subspace method. COMPEL-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering,37(3), 1271–1289.

    Article  Google Scholar 

  • Asaithambi, N. (1995). Numerical analysis: Theory and practice. Philadelphia: Saunders College Pub.

    Google Scholar 

  • Cadzow, J. A. (1990). Multiple source location-the signal subspace approach. IEEE Transactions on Acoustics, Speech, and Signal Processing,38(7), 1110–1125.

    Article  Google Scholar 

  • Capon, J. (1969). High-resolution frequency-wavenumber spectrum analysis. Proceedings of the IEEE,57(8), 1408–1418.

    Article  Google Scholar 

  • Chandran, S., & Ibrahim, M. K. (1999). DOA estimation of wide-band signals based on time-frequency analysis. IEEE Journal of Oceanic Engineering,24(1), 116–121.

    Article  Google Scholar 

  • Chen, Y.-M., Lee, J.-H., Yeh, C.-C., & Mar, J. (1991). Bearing estimation without calibration for randomly perturbed arrays. IEEE Transactions on Signal Processing,39(1), 194–197.

    Article  Google Scholar 

  • Ciarlet, P. G., Miara, B., & Thomas, J.-M. (1989). Introduction to numerical linear algebra and optimisation. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Di Claudio, E. D., & Parisi, R. (2001). WAVES: Weighted average of signal subspaces for robust wideband direction finding. IEEE Transactions on Signal Processing,49(10), 2179–2191.

    Article  Google Scholar 

  • Guo, R., Li, W., Zhang, Y., & Chen Z. (2015). DOA estimation of coherent wideband signals based on extended TOPS algorithm. In MIPPR 2015: automatic target recognition and navigation (Vol. 9812, p. 98120 V). International Society for Optics and Photonics.

  • Han, F.-M., & Zhang, X.-D. (2005). An ESPRIT-like algorithm for coherent DOA estimation. IEEE Antennas and Wireless Propagation Letters,4(1), 443–446.

    Google Scholar 

  • Hassanien, A., Vorobyov, S. A., & Wong, K. M. (2008). Robust adaptive beamforming using sequential quadratic programming: An iterative solution to the mismatch problem. IEEE Signal Processing Letters,15, 733–736.

    Article  Google Scholar 

  • Lee, T.-S. (1994). Efficient wideband source localization using beamforming invariance technique. IEEE Transactions on Signal Processing,42(6), 1376–1387.

    Article  Google Scholar 

  • Li, J., Lin, Q.-H., Kang, C.-Y., Wang, K., & Yang, X.-T. (2018). DOA estimation for underwater wideband weak targets based on coherent signal subspace and compressed sensing. Sensors,18(3), 902.

    Article  Google Scholar 

  • Pillai, S. U., & Kwon, B. H. (1989). Forward/backward spatial smoothing techniques for coherent signal identification. IEEE Transactions on Acoustics, Speech, and Signal Processing,37(1), 8–15.

    Article  Google Scholar 

  • Roy, R., & Kailath, T. (1989). ESPRIT-estimation of signal parameters via rotational invariance techniques. IEEE Transactions on Acoustics, Speech, and Signal Processing,37(7), 984–995.

    Article  Google Scholar 

  • Schmidt, R. (1986). Multiple emitter location and signal parameter estimation. IEEE Transactions on Antennas and Propagation,34(3), 276–280.

    Article  Google Scholar 

  • Sellone, F. (2005). Robust wideband DOA estimation. In 2005 IEEE/SP 13th workshop on statistical signal processing (pp. 277–282). IEEE.

  • Shan, T.-J., Wax, M., & Kailath, T. (1985). On spatial smoothing for direction-of-arrival estimation of coherent signals. IEEE Transactions on Acoustics, Speech, and Signal Processing,33(4), 806–811.

    Article  Google Scholar 

  • Shaw, A. K. (2016). Improved wideband DOA estimation using modified TOPS (mTOPS) algorithm. IEEE Signal Processing Letters,23(12), 1697–1701.

    Article  Google Scholar 

  • Totarong, P., & El-Jaroudi, A. (1993). Robust high-resolution direction-of-arrival estimation via signal eigenvector domain. IEEE Journal of Oceanic Engineering,18(4), 491–499.

    Article  Google Scholar 

  • Wang, H., & Kaveh, M. (1985). Coherent signal-subspace processing for the detection and estimation of angles of arrival of multiple wide-band sources. IEEE Transactions on Acoustics, Speech, and Signal Processing,33(4), 823–831.

    Article  Google Scholar 

  • Wax, M., Shan, T.-J., & Kailath, T. (1984). Spatio-temporal spectral analysis by eigenstructure methods. IEEE Transactions on Acoustics, Speech, and Signal Processing,32(4), 817–827.

    Article  Google Scholar 

  • Yoon, Y.-S., Kaplan, L. M., & McClellan, J. H. (2006). TOPS: New DOA estimator for wideband signals. IEEE Transactions on Signal Processing,54(6), 1977–1989.

    Article  Google Scholar 

  • Zhao, P., Si, W., Hu, G., & Wang, L. (2018). DOA estimation for a mixture of uncorrelated and coherent sources based on hierarchical sparse bayesian inference with a Gauss-Exp-Chi2 Prior. International Journal of Antennas and Propagation. https://doi.org/10.1155/2018/3505918.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadi Amiri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asadzadeh, A., Alavi, S.M., Karimi, M. et al. Coherent wide-band signals DOA estimation by the new CTOPS algorithm. Multidim Syst Sign Process 31, 1075–1089 (2020). https://doi.org/10.1007/s11045-020-00699-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-020-00699-z

Keywords

Navigation