Skip to main content
Log in

Source localization and denoising: a perspective from the TDOA space

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

In this manuscript, we formulate the problem of source localization based on Time Differences of Arrival (TDOAs) in the TDOA space, i.e., the Euclidean space spanned by TDOA measurements. More specifically, we show that source localization can be interpreted as a denoising problem of TDOA measurements. As this denoising problem is difficult to solve in general, our analysis shows that it is possible to resort to a relaxed version of it. The solution of the relaxed problem through linear operations in the TDOA space is then discussed, and its analysis leads to a parallelism with other state-of-the-art TDOA denoising algorithms. Additionally, we extend the proposed solution also to the case where only TDOAs between few pairs of microphones within an array have been computed. The reported denoising algorithms are all analytically justified, and numerically tested through simulative campaign.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. In order to simplify the presentation, we consider only the case with the microphones in general position on the plane, i.e., they do not lie on a line. The interested reader can find the complete analysis for every scenario and the proofs in the original manuscripts.

  2. With slight abuse of notation, in the proof we identify a matrix with the associated linear map defined through matrix multiplication.

  3. For the sake of compactness, throughout this paragraph we will use the word denoising referring to relaxed denoising.

References

  • Alameda-Pineda, X., & Horaud, R. (2014). A geometric approach to sound source localization from time-delay estimates. IEEE Transactions on Audio, Speech, and Language Processing, 22, 1082–1095. doi:10.1109/TASLP.2014.2317989.

    Article  Google Scholar 

  • Amari, S., & Nagaoka, H. (2000). Methods of Information Geometry. Providence, RI: American Mathematical Society.

    MATH  Google Scholar 

  • Basu, S., Pollack, R., & Roy, M. (2006). Algorithms in real algebraic geometry. Algorithms and computation in mathematics (2nd ed.). Berlin: Springer. doi:10.1007/3-540-33099-2.

    MATH  Google Scholar 

  • Beck, A., Stoica, P., & Li, J. (2008). Exact and approximate solutions of source localization problems. IEEE Transactions on Signal Processing, 56, 1770–1778. doi:10.1109/TSP.2007.909342.

    Article  MathSciNet  Google Scholar 

  • Benesty, J., & Huang, Y. (Eds.). (2004). Audio signal processing for next-generation multimedia communication systems. Berlin: Springer.

    Google Scholar 

  • Bestagini, P., Compagnoni, M., Antonacci, F., Sarti, A., & Tubaro, S. (2013). TDOA-based acoustic source localization in the space-range reference frame. Multidimensional Systems and Signal Processing. doi:10.1007/s11045-013-0233-8.

  • Canclini, A., Antonacci, E., Sarti, A., & Tubaro, S. (2013). Acoustic source localization with distributed asynchronous microphone networks. IEEE Transactions on Audio, Speech, and Language Processing, 21(2), 439–443. doi:10.1109/TASL.2012.2215601.

    Article  Google Scholar 

  • Canclini, A., Bestagini, P., Antonacci, F., Compagnoni, M., Sarti, A., & Tubaro, S. (2015). A robust and low-complexity source localization algorithm for asynchronous distributed microphone networks. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 23(10), 1563–1575. doi:10.1109/TASLP.2015.2439040.

    Article  Google Scholar 

  • Chen, J., Hudson, R., & Yao, K. (2002). Maximum-likelihood source localization and unknown sensor location estimation for wideband signals in the near-field. IEEE Transactions on Signal Processing, 50(8), 1843–1854. doi:10.1109/TSP.2002.800420.

    Article  Google Scholar 

  • Compagnoni, M., & Notari, R. (2014). TDOA-based localization in two dimension: The bifurcation curve. Fundamenta Informaticae, 135, 199–210.

    MathSciNet  MATH  Google Scholar 

  • Compagnoni, M., Bestagini, P., Antonacci, F., Sarti, A., & Tubaro, S. (2012). Localization of acoustic sources through the fitting of propagation cones using multiple independent arrays. IEEE Transactions on Audio, Speech, and Language Processing, 20, 1964–1975. doi:10.1109/TASL.2012.2191958.

    Article  MATH  Google Scholar 

  • Compagnoni, M., Notari, R., Antonacci, F., & Sarti, A. (2014). A comprehensive analysis of the geometry of tdoa maps in localization problems. Inverse Problems 30(3), 035004. http://stacks.iop.org/0266-5611/30/i=3/a=035004.

  • D’Arca, E., Robertson, N., & Hopgood, J. (2014). Look who’s talking: Detecting the dominant speaker in a cluttered scenario. In IEEE International conference on acoustics, speech and signal processing, ICASSP ’14.

  • Gillette, M., & Silverman, H. (2008). A linear closed-form algorithm for source localization from time-differences of arrival. IEEE Signal Processing Letters (SPL), 15, 1–4.

    Article  Google Scholar 

  • Grafarend, E., & Shan, J. (2002). GPS solutions: Closed forms, critical and special configurations of P4P. GPS Solutions, 5(3), 29–41.

    Article  Google Scholar 

  • Hahn, W., & Tretter, S. (1973). Optimum processing for delay-vector estimation in passive signal arrays. IEEE Transactions on Information Theory, 19, 608–614. doi:10.1109/TIT.1973.1055077.

    Article  MATH  Google Scholar 

  • Hu, H. H., & Li, D. (2002). Energy based collaborative source localization using acoustic micro-sensor array. 2002 IEEE workshop on multimedia signal processing (pp. 371–375).

  • Hu, J., & Yang, C. (2010). Estimation of sound source number and directions under a multisource reverberant environment. EURASIP Journal on Advances in Signal Processing, 2010, 63.

    Google Scholar 

  • Huang, Y., Benesty, J., Elko, G., & Mersereati, R. (2001). Real-time passive source localization: a practical linear-correction least-squares approach. IEEE Transactions on Speech and Audio Processing, 9, 943–956. doi:10.1109/89.966097.

    Article  Google Scholar 

  • Ianniello, J. (1982). Time delay estimation via cross-correlation in the presence of large estimation errors. IEEE Transactions on Acoustics, Speech and Signal Processing, 30, 998–1003.

    Article  Google Scholar 

  • Kehu, Y., Gang, W., & Luo, L. Z.-Q. (2009). Efficient convex relaxation methods for robust target localization by a sensor network using time differences of arrivals. IEEE Transactions on Signal Processing, 57(7), 2775–2784.

    Article  MathSciNet  Google Scholar 

  • Knapp, C., & Carter, G. (1976). The generalized correlation method for estimation of time delay. IEEE Transactions on Acoustics, Speech and Signal Processing, 24, 320–327.

    Article  Google Scholar 

  • Koch, V., & Westphal, R. (1995). New approach to a multistatic passive radar sensor for air/space defense. Aerospace and Electronic Systems Magazine, IEEE, 10(11), 24–32.

    Article  Google Scholar 

  • Lehmann, E. L., & Casella, G. (1998). Theory of point estimation (2nd ed.). New York: Springer.

    MATH  Google Scholar 

  • Schau, H., & Robinson, A. (1987). Passive source localization employing intersecting spherical surfaces from time-of-arrival differences. IEEE Transactions on Acoustics, Speech and Signal Processing, 35, 1223–1225. doi:10.1109/TASSP.1987.1165266.

    Article  Google Scholar 

  • Scheuing, J., & Yang, B. (2006). Disambiguation of TDOA estimates in multi-path multi-source environments (DATEMM). IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP ’06, 4, IV—IV. doi:10.1109/ICASSP.2006.1661099.

    Google Scholar 

  • Scheuing, J., & Yang, B. (2008). Disambiguation of TDOA estimation for multiple sources in reverberant environments. IEEE Transactions on Audio, Speech, and Language Processing, 16, 1479–1489. doi:10.1109/TASL.2008.2004533.

    Article  Google Scholar 

  • Schmidt, R. (1972). A new approach to geometry of range difference location. IEEE Transactions on Aerospace and Electronic Systems, AES–8, 821–835. doi:10.1109/TAES.1972.309614.

    Article  Google Scholar 

  • Schmidt, R. (1996). Least squares range difference location. IEEE Transactions on Aerospace and Electronic Systems, AES–32, 234–242. doi:10.1109/7.481265.

    Article  Google Scholar 

  • Smith, J., & Abel, J. S. (1987). Closed-form least-squares source location estimation from range-difference measurements. IEEE Transactions on Acoustics, Speech, Signal Processing, ASSP–35, 1661–1669.

    Article  Google Scholar 

  • So, H. C., Chan, Y. T., & Chan, F. K. W. (2008). Closed-form formulae for time-difference-of-arrival estimation. IEEE Transactions on Signal Processing, 56, 2614–2620.

    Article  MathSciNet  Google Scholar 

  • Spencer, S. (2007). The two-dimensional source location problem for time differences of arrival at minimal element monitoring arrays. Journal of the Acoustical Society of America, 121, 3579–3594.

    Article  Google Scholar 

  • Stoica P, Nehorai A (1988) MUSIC, maximum likelihood and cramer-rao bound. In IEEE international conference on acoustics, speech and signal processing, ICASSP ’88. doi:10.1109/ICASSP.1988.197097.

  • Teunissen, P. (2000). Adjustment theory: An introduction. Series on mathematical geodesy and positioning. Delft: Delft University Press.

    Google Scholar 

  • Trifa, V., Koene, A., Moren, J., & Cheng, G. (2007). Real-time acoustic source localization in noisy environments for human-robot multimodal interaction. In IEEE international symposium on robot and human interactive communication, RO-MAN ’07.

  • Valenzise, G., Gerosa, L., Tagliasacchi, M., Antonacci, F., & Sarti, A. (2007). Scream and gunshot detection and localization for audio-surveillance systems. In IEEE conference on advanced video and signal based surveillance, AVSS ’07.

  • Yimin, Z., Amin, M., & Ahmad, F. (2008). Localization of inanimate moving targets using dual-frequency synthetic aperture radar and time-frequency analysis. IEEE International Geoscience and Remote Sensing Symposium, 2008. IGARSS 2008, 2, II33–II36.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Canclini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Compagnoni, M., Canclini, A., Bestagini, P. et al. Source localization and denoising: a perspective from the TDOA space. Multidim Syst Sign Process 28, 1283–1308 (2017). https://doi.org/10.1007/s11045-016-0400-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-016-0400-9

Keywords

Navigation