Skip to main content
Log in

Sum and difference coarray based MIMO radar array optimization with its application for DOA estimation

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

Based on the sum and difference coarrays, multiple-input multiple-output (MIMO) radar with minimum redundancy (MR) concept, referred to as MR MIMO, can considerably increase the spatial degrees of freedom (DOFs). However, traditional MR MIMO needs computational search to determine the position of each element. In this paper, a modified MR monostatic MIMO configuration is proposed, referred to as MMRM MIMO. In the proposed system, the MMRM MIMO radar is consisted of several levels of uniform linear array, which brings the advantage that the position of each element can be determined without computational search. Furthermore, it offers more than \(N^{2}\) DOFs for an N-elemental array. In order to utilize the extended DOFs of MMRM MIMO radar for direction-of-arrival (DOA) estimation, an average Toeplitz approximation method (TAM) is employed, which achieves robust performance even under low signal-to-noise ratio, few snapshots and array error. Numerous simulation results are provided to demonstrate the effectiveness of the proposed method for DOA estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abramovich, Y. I., Spencer, N. K., & Gorokhov, A. Y. (1999). Positive-definite Toeplitz completion in DOA estimation for nonuniform linear antenna arrays. II. Partially augmentable arrays. IEEE Transactions on Signal Processing, 47, 1502–1521.

    Article  MathSciNet  MATH  Google Scholar 

  • Abramovich, Y. I., Spencer, N. K., Gorokhov, A. Y., & Spencer, N. K. (1998). Positive-definite Toeplitz completion in DOA estimation for nonuniform linear antenna arrays. I. Fully augmentable arrays. IEEE Transactions on Signal Processing, 46, 2458–2471.

    Article  MathSciNet  MATH  Google Scholar 

  • Ali, T., Sadeque, A., Saquib, M., & Ali, M. (2014). MIMO radar for target detection and localization in sensor networks. IEEE Transactions on Signal Processing, 8(1), 75–82.

    Google Scholar 

  • Bekkerman, I., & Tabrikian, J. (2006). Target detection and localization using MIMO radars and sonars. IEEE Transactions on Signal Processing, 54, 3873–3883.

    Article  Google Scholar 

  • Cao, Y., Zhang, Z., Dai, F., & Xie, R. (2011). Direction of arrival estimation for monostatic multiple-input multiple output radar with arbitrary array structures. IEEE Transactions on Signal Processing, 6, 679–686.

    Google Scholar 

  • Chen, C. Y., & Vaidyanathan, P. P. (2008). Minimum redundancy MIMO radars. In Proceedings of the IEEE international symposium on circuits systems (ISCAS), 2008, May 18–21, 2008, pp. 45–48.

  • Frankford, M., Stewart, K., Majurec, N., & Johnson, J. (2014). Numerical and experimental studies of target detection with MIMO radar. IEEE Transactions on Signal Processing, 50(2), 1569–1577.

    Google Scholar 

  • Gu, C., He, J., Zhu, X., & Liu, Z. (2010). Efficient 2D DOA estimation of coherent signals in spatially correlated noise using electromagnetic vector sensors. IEEE Transactions on Signal Processing, 21, 239–254.

    MathSciNet  MATH  Google Scholar 

  • Hack, D., Patton, L., Himed, B., & Saville, M. (2014). Detection in Passive MIMO Radar Networks. IEEE Transactions on Signal Processing, 62(11), 2999–3012.

    Article  MathSciNet  Google Scholar 

  • Haupt, R. L. Interleaving thinned sum and difference linear arrays. In Antennas and propagation society international symposium 2006, IEEE, 2006, pp. 4773–4776.

  • Hoctor, R. T., & Kassam, S. A. (1990). The unifying role of the coarray in aperture synthesis for coherent and incoherent and imaging. Proceedings of the IEEE, 78, 735–752.

    Article  Google Scholar 

  • Li, J., & Stoica, P. (2007). MIMO radar with colocated antennas. IEEE Signal Processing Magazine, 24, 106–114.

    Article  Google Scholar 

  • Liu, C. L., & Vaidyanathan, P. P. (2015). Remarks on the spatial smoothing step in coarray MUSIC. IEEE Transactions on Signal Processing, 22(9), 1438–1442.

    Article  Google Scholar 

  • Ma, W. K., Hsieh, T. H., & Chi, C. Y. (2009, April). DOA estimation of quasi-stationary signals via Khatri-Rao subspace. In Proceedings of the international conference on acoustics, speech signal processing (ICASSP), pp. 2165–2168.

  • Pal, P., & Vaidyanathan, P. P. (2010). Nested arrays: A novel approach to array processing with enhanced degrees of freedom. IEEE Transactions on Signal Processing, 58(8), 4167–4181.

    Article  MathSciNet  Google Scholar 

  • Pal, P., & Vaidyanathan, P. (2012a). Nested arrays in two dimensions, part II: Application in two dimensional array processing. IEEE Transactions on Signal Processing, 60(9), 4706–4718.

    Article  MathSciNet  Google Scholar 

  • Pal, P., & Vaidyanathan, P. (2012b). Nested arrays in two dimensions, part I: Geometrical considerations. IEEE Transactions on Signal Processing, 60(9), 4694–4705.

    Article  MathSciNet  Google Scholar 

  • Pal, P., & Vaidyanathan, P. P. (2014a). Gridless methods for underdetermined source estimation. In Proceedings of the IEEE asilomar conference on signals, systems, and computers, 2014.

  • Pal, P., & Vaidyanathan, P. (2014b). A grid-less approach to underdetermined direction of arrival estimation via low rank matrix denoising. IEEE Signal Processing Letters, 21(6), 737–741.

    Article  Google Scholar 

  • Piliai, S. U., & Kwon, B. H. (1989). Forward/backward spatial smoothing techniques for coherent signal identification. IEEE Transactions on Antennas and Propagation, 37, 8–15.

    MATH  Google Scholar 

  • Ruf, C. S. (1993). Numerical annealing of low-redundancy linear arrays. IEEE Transactions on Antennas and Propagation, 41, 85–90.

    Article  Google Scholar 

  • Shnidman, D. A. (2004). An optimization technique for sum and difference array factors Aerospace and Electronic Systems. IEEE Signal Processing Letters, 40(1), 360–370.

    Google Scholar 

  • Sun, X., Zhou, J., & Chen, H. (2014). Low complexity direction-of-arrival estimation of coherent noncircular sources. Multidimensional Systems and Signal Processing, 27(1), 159–177.

    Article  MathSciNet  MATH  Google Scholar 

  • Suwandi, L., Leyman, A., & Yong, H. (2006). Fourth-order and weighted mixed order direction-of-arrival estimators. IEEE Signal Processing Letters, 13(11), 691–694.

    Article  Google Scholar 

  • Tan, Z., Eldar, Y., & Nehorai, A. (2014). Direction of arrival estimation using co-prime arrays: A super resolution viewpoint. IEEE Transactions on Signal Processing, 61(21), 5565–5576.

    Article  MathSciNet  Google Scholar 

  • Tan, Z., & Nehorai, A. (2014). Sparse direction of arrival estimation using co-prime arrays with off-grid targets. IEEE Signal Processing Letters, 21(1), 26–29.

    Article  Google Scholar 

  • Thakrc, A., Haardt, M., & Giridhar, K. (2009). Single snapshot spatial smoothing with improved effective array aperture. IEEE Signal Processing Letters, 15(6), 505–508.

    Article  Google Scholar 

  • Zhang, Y., Amin, M., & Himed, B. (2013, May). Sparsity-based DOA estimation using co-prime arrays. In Proceedings of the IEEE international conference on acoustics, speech, signal processing, pp. 3967–3971.

  • Zhang, X., Chen, C., Li, J., & Xu, D. (2014a). Blind DOA and polarization estimation for polarization-sensitive array using dimension reduction MUSIC. IEEE Transactions on Signal Processing, 25, 67–82.

    MATH  Google Scholar 

  • Zhang, Y., Qin, S., & Amin, M. (2014b, May). DOA estimation exploiting coprime arrays with sparse sensor spacing. In Proceedings of the IEEE international conference on acoustics, speech, signal processing, pp. 2267–2271.

  • Zhang, X., Zhou, M., Chen, H., & Li, J. (2014c). Two-dimensional DOA estimation for acoustic vector-sensor array using a successive MUSIC. IEEE Transactions on Signal Processing, 25, 583–600.

    MathSciNet  MATH  Google Scholar 

  • Zheng, G., & Chen, B. (2015). Unitary dual-resolution ESPRIT for joint DOD and DOA estimation in bistatic MIMO radar. IEEE Transactions on Signal Processing, 26, 159–178.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Huang.

Additional information

This study has been supported by the National Natural Science Foundation of China under contract No. 61271292 and No. 61431016 and the Fundamental Research Funds for the Central Universities.

Appendices

Appendix 1

Proof of Corollary 1

From (15), the last sensor location in MMRA is

$$\begin{aligned} x= & {} \left[ {N_2 \left( {N_3 +1} \right) \left( {N_1 +1} \right) +N_1 N_3 -1} \right] d \nonumber \\= & {} \left[ {\left( {N_3 +1} \right) N_1 N_2 +N_2 +N_A N_3 -1} \right] d \end{aligned}$$
(24)

where \(N_{\mathrm{A}} =N_1 +N_2 \) is fixed.

(i) \(N_{\mathrm{A}} =N_1 +N_2 \) is even:

If \(N_1 =N_2 \), the last sensor location in MMRA with \(N_{\mathrm{A}} \) being even is

$$\begin{aligned} x_E \;=\;\left[ {\left( {N_3 +1} \right) N_1^2 +N_1 +N_{\mathrm{A}} N_3 -1} \right] d \end{aligned}$$
(25)

Hold \(N_{\mathrm{A}} \) invariant, then change the number of sensors in first level and second level of Part I as \({N}'_{E,1} =N_1 -n\) and \({N}'_{E,2} =N_1 +n\) respectively, where \(0<n<N_1 \). Then (26) can be rewritten as

$$\begin{aligned} {x}'_E \;= & {} \left[ {{N}'_{E,2} \left( {N_3 +1} \right) \left( {{N}'_{E,1} +1} \right) +{N}'_{E,1} N_3 -1} \right] d \nonumber \\= & {} \left[ {\left( {N_3 +1} \right) \left( {N_1^2 -n^{2}} \right) +\left( {N_1 +n} \right) +N_{\mathrm{A}} N_3 -1} \right] d \nonumber \\= & {} \left[ {\left( {N_3 +1} \right) N_1^2 +\left( {n-n^{2}} \right) +\left( {N_1 -n^{2}N_3 } \right) +N_{\mathrm{A}} N_3 -1} \right] d\;\;\;<x_E \end{aligned}$$
(26)

Similarly hold \(N_{\mathrm{A}} \) invariant, then change the number of sensors in first level and second level of Part I as \({N}''_{E,1} =N_1 +n\) and \({N}''_{E,2} =N_1 -n\) respectively, where \(0<n<N_1 \), then it can be obtained that

$$\begin{aligned} {x}''_E <{x}'_E <x_E \end{aligned}$$
(27)

In conclusion, if \(N_{\mathrm{A}} =N_1 +N_2 \) is even, the MMRA will extend the maximum degree of freedom when \(N_1 =N_2 \).

(ii) \(N_{\mathrm{A}} =N_1 +N_2 \) is odd:

If \(N_2 =N_1 +1\), the last sensor location in MMRA with \(N_{\mathrm{A}}\) being odd is

$$\begin{aligned} x_O= & {} \left[ {N_1 \left( {N_3 +1} \right) \left( {N_1 +1} \right) +\left( {N_1 +1} \right) +N_{\mathrm{A}} N_3 -1} \right] d \nonumber \\= & {} \left[ {\left( {N_3 +1} \right) N_1^2 +N_1 N_3 +N_{\mathrm{A}} N_3 +2N_1 } \right] d \end{aligned}$$
(28)

Hold \(N_{\mathrm{A}} \) invariant, then change the number of sensors in first level and second level of Part I as \({N}'_{O,1} =N_1 -n\) and \({N}'_{O,2} =N_1 +1+n\) respectively, where \(0<n<N_1 \), then (24) can be rewritten as

$$\begin{aligned} {x}'_O= & {} \left[ {{N}'_{O,2} \left( {N_3 +1} \right) \left( {{N}'_{O,1} +1} \right) +{N}'_{O,1} N_3 -1} \right] d \nonumber \\= & {} \left[ {\left( {N_3 +1} \right) \left( {N_1 -n} \right) \left( {N_1 +1+n} \right) +\left( {N_1 +n+1} \right) +N_{\mathrm{A}} N_3 -1} \right] d\nonumber \\= & {} \left[ {\left( {N_3 +1} \right) N_1^2 +N_1 N_3 +N_{\mathrm{A}} N_3 +2N_1 -nN_3 -n^{2}\left( {N_3 +1} \right) } \right] d\;\;\;<x_O \end{aligned}$$
(29)

Similarly hold \(N_{\mathrm{A}} \) invariant, then change the number of sensors in first level and second level of Part I as \({N}''_{O,1} =N_1 +n\) and \({N}''_{O,2} =N_1 +1-n\) respectively, where \(0<n<N_1 +1\), then it is obvious that

$$\begin{aligned} {x}''_O <{x}'_O <x_O \end{aligned}$$
(30)

Therefore if \(N_{\mathrm{A}} =N_1 +N_2 \) is odd, the MMRA will enhance the maximum degree of freedom when \(N_2 =N_1 +1\). \(\square \)

Appendix 2

Proof of Corollary 2

According to Corollary 1, if \(N_{\mathrm{A}} =N_1 +N_2 \) is even, the MMRA can extend the most DOFs when \(N_1 =N_2 \). Assume that\(N_{\mathrm{A}}\) is even and the number of sensors in each level of Part I is \(N_1 \), then the number of sensors in Part II is

$$\begin{aligned} N_3 =N-N_{\mathrm{A}} =N-2N_1 \end{aligned}$$
(31)

Insert (31) into (25), then the last sensor location in MMRA is

$$\begin{aligned} x= & {} \left[ {\left( {N-2N_1 +1} \right) N_1^2 +N_1 +N_{\mathrm{A}} \left( {N-2N_1 } \right) -1} \right] d \nonumber \\= & {} \left[ {\left( {N_1^2 N-2N_1^3 } \right) +\left( {2N_{1} N-3N_1^2 } \right) +N_1 -1} \right] d \end{aligned}$$
(32)

Based on Corollary 1, if the number of sensors in Part I is \(N_{\mathrm{A}} +1\) and \(N_1 \) is fixed, then \({N}'_2 =N_1 +1\). So keep N fixed and the number of sensors in Part II is

$$\begin{aligned} {N}'_3 =N-{N}'_{\mathrm{A}} =N-2N_1 -1 \end{aligned}$$
(33)

Insert (33) into (28), then the last sensor location in MMRA is

$$\begin{aligned} {x}'= & {} \left[ {{N}'_2 \left( {{N}'_3 +1} \right) \left( {N_1 +1} \right) +N_1 {N}'_3 -1} \right] d \nonumber \\= & {} \left[ {\left( {N_1^2 N-2N_1^3 } \right) +\left( {3N_1 N-6N_1^2 } \right) +\left( {N-3N_1 } \right) -1} \right] d \end{aligned}$$
(34)

Then the difference between (36) and (34) is

$$\begin{aligned} \Delta x_{O-E}= & {} {x}'-x \nonumber \\= & {} \left[ {\left( {N_1 N-3N_1^2 } \right) +\left( {N-4N_1 } \right) } \right] d \end{aligned}$$
(35)

Insert the known condition into (35), which leads to

$$\begin{aligned} \Delta x_{O-E} =\left\{ {{\begin{array}{ll} \left( {-2N_1 } \right) d<0,&{} \quad N=3N_1 -1; \\ \left( {-N_1 } \right) d<0,&{} \quad N=3N_1 ; \\ 1,&{}\quad N=3N_1 +1; \\ \end{array} }} \right. \end{aligned}$$
(36)

Next, if the number of sensors in Part I is \(N_{\mathrm{A}} +2\) and \({N}'_2 \) is fixed, then \({N}''_1 =N_1 +1\). Hence N is fixed and the number of sensors in Part II is

$$\begin{aligned} {N}''_3 =N-{N}''_{\mathrm{A}} =N-2N_1 -2 \end{aligned}$$
(37)

Insert (37) into (25), the last sensor location in MMRA is

$$\begin{aligned} {x}''= & {} \left[ {\left( {{N}''_3 +1} \right) {N}_1^{''2} +{N}''_1 +{N}''_{\mathrm{A}} {N}''_3 -1} \right] d \nonumber \\= & {} \left[ {\left( {N_1^2 N-2N_1^3 } \right) +\left( {4N_{1} N-9N_1^2 } \right) +\left( {3N-11N_{1} } \right) -5} \right] d \end{aligned}$$
(38)

Then the difference between (38) and (34) is

$$\begin{aligned} \Delta x_{E-O}= & {} {x}''-{x}' \nonumber \\= & {} \left[ {\left( {N_1 N-3N_1^2 } \right) +\left( {2N-8N_1 } \right) -4} \right] d \end{aligned}$$
(39)

Insert the known condition into (39), which can be rewritten as

$$\begin{aligned} \Delta x_{E-O} =\left\{ {{\begin{array}{ll} 0&{}\quad N=3\left( {N_1 +1} \right) -1; \\ N_1 +2>0,&{} \quad N=3\left( {N_1 +1} \right) ; \\ 2N_1 +4>0,&{}\quad N=3\left( {N_1 +1} \right) +1; \\ \end{array} }} \right. \end{aligned}$$
(40)

As observed in Sect. 3, the more \(N_1 \) is, the longer spacing between sensors in Part II is. Compared (36) to (40), we can obtain the conclusion: if \(N=3N_1 -1\) or \(3N_1 \), then \(N_{\mathrm{A}} =2N_1 \) and \(N_3 =N_1 -1\) or \(N_1 \); if \(N=3N_1 +1\), then \(N_{\mathrm{A}} =2N_1 +1\) and \(N_3 =N_1 \). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Liao, G., Li, J. et al. Sum and difference coarray based MIMO radar array optimization with its application for DOA estimation. Multidim Syst Sign Process 28, 1183–1202 (2017). https://doi.org/10.1007/s11045-016-0387-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-016-0387-2

Keywords

Navigation