Skip to main content
Log in

Deep learning of multibody minimal coordinates for state and input estimation with Kalman filtering

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

In general, multibody models are described with a set of redundant coordinates and additional constraints. Their dynamics is thus expressed through differential algebraic equations. As an alternative, the minimal coordinate formulation permits to describe a rigid system with the minimal number of variables leading to ordinary differential equations which can be employed in a coupled state/input estimation scheme. However, in some cases the explicit relation between the full-system coordinates and the minimal coordinates may not be available or analytically obtainable, as for closed-loop mechanisms. In this work, a previously presented deep learning framework to find the non-linear mapping and reduce a generic multibody model from redundant to minimal coordinates is employed. The resulting equations are then exploited in an extended Kalman filter where the unknown inputs are considered as augmented states and jointly estimated. The necessary derivatives are given and it is shown that acceleration measurements are sufficient for the estimation. The method is experimentally validated on a slider–crank mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

ℤ:

integer numbers

ℝ:

real numbers

\(\boldsymbol{a} \in \mathbb{R}^{n_{1}}\) :

column vector

\(a \in \mathbb{R}\) :

scalar

\(\boldsymbol{A} \in \mathbb{R}^{n_{1} \times n_{2}}\) :

matrix

\(\underline{\boldsymbol{A}} \in \mathbb{R}^{n_{1} \times n_{2} \times n_{3}}\) :

3-d tensor

\(\boldsymbol{I}_{a} \in \mathbb{Z}^{n_{a} \times n_{a}}\) :

identity matrix

\(\boldsymbol{0}_{a_{1}} \in \mathbb{Z}^{n_{a_{1}}}\) :

zero vector

\(\boldsymbol{0}_{a_{1}, a_{2}} \in \mathbb{Z}^{n_{a_{1}} \times n_{a_{2}}}\) :

zero matrix

\(t\) :

time

\(\Delta t\) :

time step

\(\square^{\mathrm{T}}\) :

transpose operator

\(\square^{-1}\) :

matrix inverse

⊗:

Kronecker product

\(\underline{\boldsymbol{A}} \ \boldsymbol{A}= \underline{\boldsymbol{A}}_{\, \alpha, \beta, \gamma} \ \boldsymbol{A}_{\beta, \gamma}\) :

tensor-matrix product (Einstein sum convention)

\(\dot{\square}=\frac{\mathrm{d}\square}{\mathrm{d}t}, \ddot{\square}=\frac{\mathrm{d}^{2}\square}{\mathrm{d}t^{2}}\) :

time derivatives

\(\frac{\partial \boldsymbol{a}_{1}}{\partial \boldsymbol{a}_{2}} \in \mathbb{R}^{n_{a_{1}} \times n_{a_{2}}} \) :

partial derivatives

\(\square^{-}\) :

a priori prediction

\(\square^{+}\) :

a posteriori prediction

\(\square_{\tau}= \square(t = \tau)\) :

\(\tau \)-th time sample

References

  1. Haug, E.J.: Computer Aided Kinematics and Dynamics of Mechanical Systems, vol. 1. Allyn and Bacon, Boston (1989)

    Google Scholar 

  2. García de Jalón, J., Bayo, E.: Kinematic and Dynamic Simulation of Multibody Systems: The Real-Time Challenge. Springer, Berlin (2012)

    Google Scholar 

  3. Hiller, M., Kecskemethy, A.: Dynamics of multibody systems with minimal coordinates. In: Computer-Aided Analysis of Rigid and Flexible Mechanical Systems, pp. 61–100. Springer, Berlin (1994)

    Chapter  Google Scholar 

  4. Kalman, R.: A new approach to linear filtering and prediction problems. J. Basic Eng. 82(1), 35–45 (1960)

    Article  MathSciNet  Google Scholar 

  5. Simon, D.: Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches. Wiley, New York (2006)

    Book  Google Scholar 

  6. Kalman, R., Bucy, R.: New results in linear filtering and prediction theory. J. Basic Eng. 83(3), 95–108 (1961)

    Article  MathSciNet  Google Scholar 

  7. Sanjurjo, E., Naya, M.Á., Blanco-Claraco, J.L., Torres-Moreno, J.L., Giménez-Fernández, A.: Accuracy and efficiency comparison of various nonlinear Kalman filters applied to multibody models. Nonlinear Dyn. 88(3), 1935–1951 (2017)

    Article  MathSciNet  Google Scholar 

  8. Cuadrado, J., Dopico, D., Barreiro, A., Delgado, E.: Real-time state observers based on multibody models and the extended Kalman filter. J. Mech. Sci. Technol. 23(4), 894–900 (2009)

    Article  Google Scholar 

  9. Cuadrado, J., Dopico, D., Perez, J., Pastorino, R.: Automotive observers based on multibody models and the extended Kalman filter. Multibody Syst. Dyn. 27(1), 3–19 (2012)

    Article  MathSciNet  Google Scholar 

  10. Pastorino, R., Richiedei, D., Cuadrado, J., Trevisani, A.: State estimation using multibody models and non-linear Kalman filters. Int. J. Non-Linear Mech. 53, 83–90 (2013)

    Article  Google Scholar 

  11. Risaliti, E., Tamarozzi, T., Vermaut, M., Cornelis, B., Desmet, W.: Multibody model based estimation of multiple loads and strain field on a vehicle suspension system. Mech. Syst. Signal Process. 123, 1–25 (2019)

    Article  Google Scholar 

  12. Naets, F., Pastorino, R., Cuadrado, J., Desmet, W.: Online state and input force estimation for multibody models employing extended Kalman filtering. Multibody Syst. Dyn. 32(3), 317–336 (2014)

    Article  MathSciNet  Google Scholar 

  13. Palomba, I., Richiedei, D., Trevisani, A.: Reduced-order observers for nonlinear state estimation in flexible multibody systems. Shock and Vibration 2018, 6538737 (2018). https://doi.org/10.1155/2018/6538737

    Article  Google Scholar 

  14. Angeli, A., Desmet, W., Naets, F.: Deep learning for model order reduction of multibody systems to minimal coordinates. Comput. Methods Appl. Mech. Eng. 373, 113517 (2021)

    Article  MathSciNet  Google Scholar 

  15. Angeli, A., Naets, F., Desmet, W.: A machine learning approach for minimal coordinate multibody simulation. In: Multibody Dynamics 2019, pp. 417–424. Springer, Berlin (2020)

    Chapter  Google Scholar 

  16. Angeli, A., Naets, F., Desmet, W.: Deep learning of (periodic) minimal coordinates for multibody simulations. In: 16th International Conference on Multibody Systems, Nonlinear Dynamics, and Control (MSNDC), Presented at-2020 ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE2020 (2020)

    Google Scholar 

  17. Kraus, C., Winckler, M., Bock, H.: Modeling mechanical DAE using natural coordinates. Math. Comput. Model. Dyn. Syst. 7(2), 145–158 (2001)

    Article  Google Scholar 

  18. Hernandez, E.M.: Optimal model-based state estimation in mechanical and structural systems. Struct. Control Health Monit. 20(4), 532–543 (2013)

    Article  Google Scholar 

  19. Chatzi, E.N., Fuggini, C.: Online correction of drift in structural identification using artificial white noise observations and an unscented Kalman filter. Smart Struct. Syst. 16(2), 295–328 (2015)

    Article  Google Scholar 

  20. Naets, F., Cuadrado, J., Desmet, W.: Stable force identification in structural dynamics using Kalman filtering and dummy-measurements. Mech. Syst. Signal Process. 50, 235–248 (2015)

    Article  Google Scholar 

  21. Ghosh, B.K., Rosenthal, J.: A generalized Popov–Belevitch–Hautus test of observability. IEEE Trans. Autom. Control 40(1), 176–180 (1995)

    Article  MathSciNet  Google Scholar 

  22. LeCun, Y.A., Bottou, L., Orr, G.B., Müller, K.-R.: Efficient backprop. In: Neural Networks: Tricks of the Trade, pp. 9–48. Springer, Berlin (2012)

    Chapter  Google Scholar 

  23. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., et al.: Tensorflow: a system for large-scale machine learning. In: 12th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 16), pp. 265–283 (2016)

    Google Scholar 

  24. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization, preprint arXiv:1412.6980 (2014)

  25. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org

    MATH  Google Scholar 

  26. Betsch, P., Sänger, N.: On the consistent formulation of torques in a rotationless framework for multibody dynamics. Comput. Struct. 127, 29–38 (2013)

    Article  Google Scholar 

Download references

Acknowledgement

The Research Fund KU Leuven, the Flanders Innovation & Entrepreneurship Agency within the IMPROVED project and the AI impulse program of the Flemish Government are gratefully acknowledged for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Angeli.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Input projection matrix

Appendix A: Input projection matrix

Here, the generic input projection into natural coordinates is obtained. Assuming that the external input (to be estimated) \(\boldsymbol{a}\) is a force or a torque in one of the 6 directions:

$$ \boldsymbol{a} = \left [ \textstyle\begin{array}{l} \boldsymbol{a}_{t} \\ \boldsymbol{a}_{r} \end{array}\displaystyle \right ] = \left [ \textstyle\begin{array}{l} a_{t,x} \\ a_{t,y} \\ a_{t,z} \\ a_{r,x} \\ a_{r,y} \\ a_{r,z} \end{array}\displaystyle \right ] $$
(59)

where \(\boldsymbol{a}_{t}, \ \boldsymbol{a}_{r} \in \mathbb{R}^{3}\) are, respectively, the translational and rotational components.

If the force/torque is acting on the body \(b\), its projection into natural coordinates \(\boldsymbol{a}_{n,b} \in \mathbb{R}^{12}\) can be obtained:

$$ \boldsymbol{a}_{n,b} = \left [ \textstyle\begin{array}{c@{\quad }c} \boldsymbol{I}_{3} & \boldsymbol{a}_{t} \\ \boldsymbol{\Theta }_{b}^{\mathrm{T}}& \boldsymbol{a}_{r} \end{array}\displaystyle \right ] = \boldsymbol{S}_{n,b} \ \boldsymbol{a} $$
(60)

where \(\boldsymbol{\Theta }_{b} \in \mathbb{R}^{3 \times 9}\) is the NC angular transformation matrix:

$$ \boldsymbol{\Theta }_{b} (\boldsymbol{r}_{b}) = \left ( \frac{\partial \boldsymbol{\theta }_{b}}{\partial \boldsymbol{r}_{b}} \right )^{\mathrm{T}}$$
(61)

with \(\boldsymbol{r}_{b} \in \mathbb{R}^{9}\) representing the body rotation matrix components as in Eq. (16) and \(\angle \boldsymbol{\theta }_{f} \in \mathbb{R}^{3}\) as the angular displacement. Knowing [26] the NC force due to a torque along a certain unit vector, the NC angular transformation matrix can be expressed as

$$ \boldsymbol{\Theta }_{b} = - \frac{1}{2} \ \left [ \textstyle\begin{array}{l} \left [\boldsymbol{r}_{b,x}\right ]_{\times }\\ \left [\boldsymbol{r}_{b,y}\right ]_{\times }\\ \left [\boldsymbol{r}_{b,z}\right ]_{\times }\end{array}\displaystyle \right ]^{\mathrm{T}}.$$
(62)

Therefore, the obtained NC force can be projected into minimal coordinates as:

$$ \boldsymbol{a}_{m} = \left ( \frac{\partial \psi }{\partial \boldsymbol{q}_{m}} \right )^{\mathrm{T}}\ \boldsymbol{S}_{b \in n}^{\mathrm{T}}\ \boldsymbol{a}_{n, b} $$
(63)

where \(\boldsymbol{S}_{b \in n} \in \mathbb{Z}^{12 \times n_{n}}\) is the (generalized Kronecker delta) sparse matrix to select the 12 body coordinates from the \(n_{n}\) natural coordinates and \(\boldsymbol{a}_{m} \in \mathbb{R}^{n_{m}}\) is the MC projection of the unknown external forces. If, instead of the reference body frame, the input is applied on the generic body-attached frame \(f\), a projection as in Eq. (51) has to be performed.

It is finally noted that while for the generic case the derivative of the input projection matrix \(\boldsymbol{S}_{n}\) has to be taken into account in Eq. (54), in the case of purely translational forces it is constant, simplifying the expression.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Angeli, A., Desmet, W. & Naets, F. Deep learning of multibody minimal coordinates for state and input estimation with Kalman filtering. Multibody Syst Dyn 53, 205–223 (2021). https://doi.org/10.1007/s11044-021-09791-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-021-09791-z

Keywords

Navigation