Skip to main content
Log in

A new modeling method for flexible multibody systems

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

In this paper, the new form of Kane’s equations of motion for constrained systems is derived based on the general dynamic equation in the form of virtual power. A new dynamic modeling method for large rotation and deformation analysis of a flexible multibody system that undergoes arbitrary displacements is proposed based on the new form of Kane’s equations and the absolute nodal coordinate formulation. The equations of motion of the flexible multibody system established by the proposed modeling method are a set of pure differential equations without multipliers, and they have a unified compact form, which helps to design the controller and can avoid the inconvenience caused by the undetermined multipliers in the numerical calculations. Finally, a planar flexible double pendulum system is modeled by using the proposed modeling method and the Lagrange method of the first kind, respectively, and the validity and feasibility of the proposed method are demonstrated by comparing the numerical results obtained from the above two methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hooker, W.W., Margulies, G.: The dynamical attitude equations for an N-body satellite. J. Astronaut. Sci. 12(4), 123–128 (1965)

    MathSciNet  Google Scholar 

  2. Wang, J.T., Huston, R.L.: Kane’s equations with undetermined multipliers—application to constrained multibody systems. J. Appl. Mech. 54(2), 424–429 (1987). doi:10.1115/1.3173031

    Article  MATH  Google Scholar 

  3. Kamman, J.W., Huston, R.L.: Dynamics of constrained multibody systems. J. Appl. Mech. 51(4), 899–903 (1984). doi:10.1115/1.3167743

    Article  MATH  Google Scholar 

  4. Xu, H., Ma, X., Huang, W., Shao, C., Zou, Z.: The dynamical problems investigation on dual-robot system with coordinated constraints. J. Vib. Eng. 7(1), 1–8 (1994) (in Chinese)

    Article  Google Scholar 

  5. Singh, R.P., Likins, P.W.: Singular value decomposition for constrained dynamical systems. J. Appl. Mech. 52(4), 943–948 (1985). doi:10.1115/1.3169173

    Article  MATH  MathSciNet  Google Scholar 

  6. Udwadia, F.E.: Equations of motion for mechanical systems: a unified approach. Int. J. Non-Linear Mech. 31(6), 951–958 (1996). doi:10.1016/S0020-7462(96)00116-3

    Article  MATH  MathSciNet  Google Scholar 

  7. Bajodah, A.H., Hodges, D.H., Chen, Y.H.: New form of Kane’s equations of motion for constrained systems. J. Guid. Control Dyn. 26(1), 79–88 (2003). doi:10.2514/2.5017

    Article  Google Scholar 

  8. Hu, Q., Jia, Y., Xu, S.: An improved Kane’s method for multibody dynamics. Chin. J. Theor. Appl. Mech. 43(5), 968–972 (2011) (in Chinese)

    MathSciNet  Google Scholar 

  9. Meirovitch, L.: A new method of solution of the eigenvalue problem for gyroscopic systems. AIAA J. 12(10), 1337–1342 (1974). doi:10.2514/3.49486

    Article  MATH  MathSciNet  Google Scholar 

  10. Singh, R.P., Vandervoort, R.J., Likins, P.W.: Dynamics of flexible bodies in tree topology—a computer-oriented approach. J. Guid. Control Dyn. 8(5), 584–590 (1985). doi:10.2514/3.20026

    Article  MATH  Google Scholar 

  11. Ho, J.Y.L.: Direct path method for flexible multibody spacecraft dynamics. J. Spacecr. Rockets 14(2), 102–110 (1977). doi:10.2514/3.57167

    Article  Google Scholar 

  12. Likins, P.: Spacecraft attitude dynamics and control—a personal perspective on early developments. J. Guid. Control Dyn. 9(2), 129–134 (1986). doi:10.2514/3.20080

    Article  Google Scholar 

  13. Shabana, A.A.: An absolute nodal coordinates formulation for the large rotation and deformation analysis of flexible bodies. Technical report No. MBS96-1-UIC, University of Illinois at Chicago (1996)

  14. Berzeri, M., Campanelli, M., Shabana, A.: Definition of the elastic forces in the finite-element absolute nodal coordinate formulation and the floating frame of reference formulation. Multibody Syst. Dyn. 5(1), 21–54 (2001). doi:10.1023/A:1026465001946

    Article  MATH  Google Scholar 

  15. García-Vallejo, D., Sugiyama, H., Shabana, A.A.: Finite element analysis of the geometric stiffening effect. Part 1: a correction in the floating frame of reference formulation. Proc. Inst. Mech. Eng., Proc., Part K, J. Multi-Body Dyn. 219(2), 187–202 (2005). doi:10.1243/146441905x10041

    Google Scholar 

  16. García-Vallejo, D., Sugiyama, H., Shabana, A.A.: Finite element analysis of the geometric stiffening effect. Part 2: non-linear elasticity. Proc. Inst. Mech. Eng., Proc., Part K, J. Multi-Body Dyn. 219(2), 203–211 (2005). doi:10.1243/146441905x10050

    Google Scholar 

  17. Li, B., Liu, J.: Application of absolute nodal coordination formulation in flexible beams with large deformation. J. Shanghai Jiaotong Univ. 39(5), 827–831 (2005) (in Chinese)

    MATH  Google Scholar 

  18. Shabana, A.A., Christensen, A.P.: Three-dimensional absolute nodal co-ordinate formulation: plate problem. Int. J. Numer. Methods Eng. 40(15), 2775–2790 (1997). doi:10.1002/(SICI)1097-0207(19970815)40:15<2775::AID-NME189>3.0.CO;2-%23

    Article  MATH  MathSciNet  Google Scholar 

  19. Mikkola, A.M., Shabana, A.A.: A non-incremental finite element procedure for the analysis of large deformation of plates and shells in mechanical system applications. Multibody Syst. Dyn. 9(3), 283–309 (2003). doi:10.1023/A%3A1022950912782

    Article  MATH  MathSciNet  Google Scholar 

  20. Dufva, K., Shabana, A.A.: Analysis of thin plate structures using the absolute nodal coordinate formulation. Proc. Inst. Mech. Eng., Proc., Part K, J. Multi-Body Dyn. 219(4), 345–355 (2005). doi:10.1243/146441905x50678

    Google Scholar 

  21. García-Vallejo, D., Mayo, J., Escalona, J.L., Domínguez, J.: Efficient evaluation of the elastic forces and the Jacobian in the absolute nodal coordinate formulation. Nonlinear Dyn. 35(4), 313–329 (2004). doi:10.1023/B:NODY.0000027747.41604.20

    Article  MATH  Google Scholar 

  22. Shabana, A.A.: Dynamics of Multibody Systems, 3rd edn. Cambridge University Press, New York (2005)

    Book  MATH  Google Scholar 

  23. Omar, M.A., Shabana, A.A.: A two-dimensional shear deformable beam for large rotation and deformation problems. J. Sound Vib. 243(3), 565–576 (2001). doi:10.1016/j.jsv.2003.12.044

    Article  Google Scholar 

  24. Kerkkänen, K.S., Sopanen, J.T., Mikkola, A.M.: A linear beam finite element based on the absolute nodal coordinate formulation. J. Mech. Des. 127(4), 621–630 (2004). doi:10.1115/1.1897406

    Article  Google Scholar 

  25. Dufva, K.E., Sopanen, J.T., Mikkola, A.M.: A two-dimensional shear deformable beam element based on the absolute nodal coordinate formulation. J. Sound Vib. 280(3–5), 719–738 (2005). doi:10.1016/j.jsv.2003.12.044

    Article  Google Scholar 

  26. García-Vallejo, D., Mikkola, A.M., Escalona, J.L.: A new locking-free shear deformable finite element based on absolute nodal coordinates. Nonlinear Dyn. 50(1–2), 249–264 (2007). doi:10.1007/s11071-006-9155-4

    Article  MATH  Google Scholar 

  27. Shabana, A.A., Yakoub, R.Y.: Three dimensional absolute nodal coordinate formulation for beam elements: theory. J. Mech. Des. 123(4), 606–613 (2000). doi:10.1115/1.1410100

    Article  Google Scholar 

  28. Yakoub, R.Y., Shabana, A.A.: Three dimensional absolute nodal coordinate formulation for beam elements: implementation and applications. J. Mech. Des. 123(4), 614–621 (2000). doi:10.1115/1.1410099

    Article  Google Scholar 

  29. Dufva, K., Sopanen, J.T., Mikkola, A.M.: Three-dimensional beam element based on a cross-sectional coordinate system approach. Nonlinear Dyn. 43(4), 311–327 (2006). doi:10.1007/s11071-006-8326-7

    Article  MATH  Google Scholar 

  30. Gerstmayr, J., Matikainen, M.K.: Analysis of stress and strain in the absolute nodal coordinate formulation. Mech. Based Des. Struct. Mach. 34(4), 409–430 (2006). doi:10.1080/15397730601044895

    Article  Google Scholar 

  31. Dufva, K., Shabana, A.A.: Analysis of thin plate structures using the absolute nodal coordinate formulation. Proc. Inst. Mech. Eng., Proc., Part K, J. Multi-Body Dyn. 219(4), 345–355 (2005). doi:10.1243/146441905X50678

    Google Scholar 

  32. Kübler, L., Eberhard, P., Geisler, J.: Flexible multibody systems with large deformations using absolute nodal coordinates for isoparametric solid brick elements. In: ASME 2003 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Chicago, Illinois, DETC2003/VIB-48303 (2003). doi:10.1115/DETC2003/VIB-48303

    Google Scholar 

  33. Tian, Q., Chen, L.P., Zhang, Y.Q., Yang, J.: An efficient hybrid method for multibody dynamics simulation based on absolute nodal coordinate formulation. J. Comput. Nonlinear Dyn. 4(2), 021009 (2009). doi:10.1115/1.3079783

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by Doctoral Fund of Ministry of Education of China (Grant No. 20112302120005). The support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Zhao, R., Xue, Z. et al. A new modeling method for flexible multibody systems. Multibody Syst Dyn 35, 179–190 (2015). https://doi.org/10.1007/s11044-014-9423-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-014-9423-x

Keywords

Navigation