Skip to main content
Log in

Indirectly controlled limit cycle walking of combined rimless wheel based on entrainment to active wobbling motion

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

It has been clarified that a passive combined rimless wheel (CRW) that consists of two identical eight-legged rimless wheels can increase the walking speed either by adjusting the phase difference between the fore and rear legs or by using a passive wobbling mass that vibrates up-and-down in the body frame. Toward a further speeding-up of the CRW, this paper investigates the effect of an active wobbling mass driven by an actuator and the effect of an indirect excitation control. First, we develop the mathematical model and numerically show that the CRW generates a walking motion, which is entrained to the up-and-down motion of the active wobbling mass at frequencies higher than the natural frequency of the CRW. We discuss the gait properties mainly from the viewpoints of frequency and phase relationships. Second, we conduct verification experiments using our prototype CRW machine and describe the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. McGeer, T.: Passive dynamic walking. Int. J. Robot. Res. 9(2), 62–82 (1990)

    Article  Google Scholar 

  2. Chevallereau, C., Abba, G., Aoustin, Y., Plestan, F., Westervelt, E.R., Canudas-de-Wit, C., Grizzle, J.W.: RABBIT: a testbed for advanced control theory. IEEE Control Syst. Mag. 23(5), 57–79 (2003)

    Article  Google Scholar 

  3. Tedrake, R., Zhang, T.W., Fong, M., Seung, H.S.: Actuating a simple 3D passive dynamic walker. In: Proc. of the IEEE Int. Conf. on Robotics and Automation, pp. 4656–4661 (2004)

    Google Scholar 

  4. Remy, C.D., Buffinton, K., Siegwart, R.: Stability analysis of passive dynamic walking of quadrupeds. Int. J. Robot. Res. 29(9), 1173–1185 (2010)

    Article  Google Scholar 

  5. Sugimoto, Y., Yoshioka, H., Osuka, K.: Realization and motion analysis of multi-legged passive dynamic walking. In: Proc. of the SICE Annual Conference, pp. 2790–2793 (2010)

    Google Scholar 

  6. Coleman, M.J., Chatterjee, A., Ruina, A.: Motions of a rimless spoked wheel: a simple three-dimensional system with impacts. Dyn. Stab. Syst. 12(3), 139–159 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  7. Asano, F.: Stability principle underlying passive dynamic walking of rimless wheel. In: Proc. of the IEEE Int. Conf. on Control Applications, pp. 1039–1044 (2012)

    Google Scholar 

  8. Asano, F.: Efficiency and optimality of two-period limit cycle walking. Adv. Robot. 26(1–2), 155–176 (2012)

    Article  Google Scholar 

  9. Inoue, R., Asano, F., Tanaka, D., Tokuda, I.: Passive dynamic walking of combined rimless wheel and its speeding-up by adjustment of phase difference. In: Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 2747–2752 (2011)

    Google Scholar 

  10. Tanaka, D., Asano, F., Tokuda, I.: Gait analysis and efficiency improvement of passive dynamic walking of combined rimless wheel with wobbling mass. In: Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 151–156 (2012)

    Google Scholar 

  11. Ackerman, J., Seipel, J.: Energetics of bio-inspired legged robot locomotion with elastically-suspended loads. In: Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 203–208 (2011)

    Google Scholar 

  12. Rome, L.C., Flynn, L., Goldman, E.M., Yoo, T.D.: Generating electricity while walking with loads. Science 309(5741), 1725–1728 (2005)

    Article  Google Scholar 

  13. Rome, L.C., Flynn, L., Yoo, T.D.: Biomechanics: rubber bands reduce the cost of carrying loads. Nature 444(7122), 1023–1024 (2006)

    Article  Google Scholar 

  14. Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge University Press, Cambridge (2003)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank ONO-DENKI CO., LTD. for many helpful suggestions and technical supports in development of the prototype walking machine. They also wish to thank the members of Asano Laboratory at JAIST for supporting the walking experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fumihiko Asano.

Appendix A

Appendix A

The details of the matrix M(q) and the vector \(\boldsymbol{h}( \boldsymbol{q}, \dot{\boldsymbol{q}} )\) in (1) are as follows:

$$\begin{aligned} \boldsymbol{M}(\boldsymbol{q}) =& \left [ \begin{array}{c@{\quad}c@{\quad}c} \boldsymbol{M}_1 (\boldsymbol{q}) & \mathbf{0}_{3 \times 3} & \mathbf{0}_{3 \times 4} \\ \mathbf{0}_{3 \times 3} & \boldsymbol{M}_2 (\boldsymbol{q}) & \mathbf{0}_{3 \times 4} \\ \mathbf{0}_{4 \times 3} & \mathbf{0}_{4 \times 3} & \boldsymbol{M}_3 (\boldsymbol{q}) \end{array} \right ], \end{aligned}$$
(28)
$$\begin{aligned} \boldsymbol{M}_1 (\boldsymbol{q}) =& \left [ \begin{array}{c@{\quad}c@{\quad}c} m_1 & 0 & m_1 L_1 \cos \theta_1 \\ 0 & m_1 & - m_1 L_1 \sin \theta_1 \\ m_1 L_1 \cos \theta_1& - m_1 L_1 \sin \theta_1 & m_1 L_1^2 + I_1 \\ \end{array} \right ], \end{aligned}$$
(29)
$$\begin{aligned} \boldsymbol{M}_2 (\boldsymbol{q}) =& \left [ \begin{array}{c@{\quad}c@{\quad}c} m_2 & 0 & m_2 L_2 \cos \theta_2 \\ 0 & m_2 & - m_2 L_2 \sin \theta_2 \\ m_2 L_2 \cos \theta_2& - m_2 L_2 \sin \theta_2 & m_2 L_2^2 + I_2 \\ \end{array} \right ], \end{aligned}$$
(30)
$$\begin{aligned} \boldsymbol{M}_3 (\boldsymbol{q}) =& \left [ \begin{array}{c@{\quad}c@{\quad}c@{\quad}c} m_3 + m_c & 0 & - m_c L_c \cos \theta_3 & - m_c \sin \theta_3 \\ 0 & m_3 + m_c & m_c L_c \sin \theta_3 & - m_c \cos \theta_3 \\ - m_c L_c \cos \theta_3 & m_c L_c \sin \theta_3 & m_c L_c^2 & 0 \\ - m_c \sin \theta_1& - m_c \cos \theta_3 & 0 & m_c \end{array} \right ], \end{aligned}$$
(31)
$$\begin{aligned} \boldsymbol{h}( \boldsymbol{q},\dot{\boldsymbol{q}} ) =& \left [ \begin{array}{c} \boldsymbol{h}_1 ( \boldsymbol{q},\dot{\boldsymbol{q}} ) \\ \boldsymbol{h}_2 ( \boldsymbol{q},\dot{\boldsymbol{q}} ) \\ \boldsymbol{h}_3 ( \boldsymbol{q},\dot{\boldsymbol{q}} ) \end{array} \right ], \end{aligned}$$
(32)
$$\begin{aligned} \boldsymbol{h}_1 ( \boldsymbol{q},\dot{\boldsymbol{q}} ) =& \left [ \begin{array}{c} -m_1 L_1 \mbox{$\dot{\theta}$}_1^2 \sin \theta_1 \\ m_1 ( g - L_1 \mbox{$\dot{\theta}$}_1^2 \cos \theta_1 ) \\ - m_1 g L_1 \sin \theta_1 \end{array} \right ], \end{aligned}$$
(33)
$$\begin{aligned} \boldsymbol{h}_2 ( \boldsymbol{q},\dot{\boldsymbol{q}} ) =& \left [ \begin{array}{c} -m_2 L_2 \mbox{$\dot{\theta}$}_2^2 \sin \theta_2 \\ m_2 ( g - L_2 \mbox{$\dot{\theta}$}_2^2 \cos \theta_2 ) \\ - m_2 g L_2 \sin \theta_2 \end{array} \right ], \end{aligned}$$
(34)
$$\begin{aligned} \boldsymbol{h}_3 ( \boldsymbol{q},\dot{\boldsymbol{q}} ) =& \left [ \begin{array}{c} m_c \mbox{$\dot{\theta}$}_3^2 ( L_c \mbox{$\dot{\theta}$}_3 \sin \theta_3 - 2 \dot{L}_c \cos \theta_3 ) \\ (m_3 + m_c) g + m_c \mbox{$\dot{\theta}$}_3 ( L_c \mbox{$\dot{\theta}$}_3 \cos \theta_3 + 2 \dot{L}_c \sin \theta_3 ) \\ m_c L_c ( g \sin \theta_3 + 2 \dot{L}_c \mbox{$\dot{\theta}$}_3 ) \\ -m_c ( g \cos \theta_3 + L_c \mbox{$\dot{\theta}$}_3^2 ) \end{array} \right ]. \end{aligned}$$
(35)

Note that we added inertia moments for the fore and rear RWs, I 1 and I 2, as indicated in (29) and (30). This is necessary to calculate M(q)−1 in the derivations of λ and \(\ddot{\boldsymbol{q}}\). After that, for deriving (9), we finally took the limits as I 1→0 and I 2→0.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asano, F., Tokuda, I. Indirectly controlled limit cycle walking of combined rimless wheel based on entrainment to active wobbling motion. Multibody Syst Dyn 34, 191–210 (2015). https://doi.org/10.1007/s11044-014-9419-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-014-9419-6

Keywords

Navigation