Skip to main content
Log in

On the modeling of the intervertebral joint in multibody models for the spine

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

The need to develop feasible computational musculoskeletal models of the spine has led to the development of several multibody models. Central features in these works are models for the ligaments, muscles, and intervertebral joint. The purpose of the present paper is to show how experimental measurements of joint stiffnesses can be properly incorporated using a bushing element. The required refinements to existing bushing force functions in musculoskeletal software platforms are discussed and further implemented using a SpineBushing element specific to the intervertebral joint. Four simple lumbar spine models are then used to illustrate the accompanying improvements. Electronic supplemental material for this article includes a complementary review of formulations of stiffness matrices for the intervertebral joint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. An example of a stiffness matrix with the aforementioned symmetries can be seen in Eq. (24) below.

  2. The reader is also referred to Sect. 5.1 of the Online Resource for further details on the specifications of Δ y A and Δ β.

  3. In OpenSim, the generalized force due to the bushing element \(\mathsf{F}^{B}_{1} = - \mathsf{F}^{B}_{2}\) is exerted on the bushing frame \(\mathbb{B}_{2}\) and an additional transformation applied to account for the shift from \(\mathbb{B}_{2}\) to \(\mathbb{B}_{1}\). Consequently, the generalized force acting on the frame \(\mathbb{B}_{1}\) is not equal and opposite to that exerted on the frame \(\mathbb{B}_{2}\) by the bushing element. Rather, the force and moment vectors exerted on \(\mathbb{B}_{1}\) by the bushing element are given by

    $$\mathbf{F}^{B}_1 = -\mathbf{F}^{B}_2, \qquad \mathbf{M}^{B}_1 = -\mathbf{M}^{B}_2 + \bigl( \mathbf{x}_B^2 - \mathbf{x}_B^1 \bigr) \times\mathbf{F}_B^1. $$

    We will refrain from using this convention.

  4. Recall that in both of these studies, the motion and loads at the vertebral centers of geometry (≈ vertebral center of mass) were used to determine the elements of K E.

  5. The coefficients associated with their reported stiffness matrices were determined by performing highly controlled motion in one direction, measuring the ensuing forces and moments exerted at the geometric centers of the vertebrae, and then using a least-squares fit to the experimental data by the method specified in [35].

  6. It is important to note that the computed muscle forces depend on the optimization routine employed.

References

  1. Ambrósio, J., Verissimo, P.: Improved bushing models for general multibody systems and vehicle dynamics. Multibody Syst. Dyn. 22, 341–365 (2009). doi:10.1007/s11044-009-9161-7

    Article  MATH  Google Scholar 

  2. Blundell, M., Harty, D.: The Multibody Systems Approach to Vehicle Dynamics. Butterworth Heinemann, London (2004)

    Google Scholar 

  3. Christophy, M., Faruk Senan, N.A., Lotz, J.C., O’Reilly, O.M.: A musculoskeletal model for the lumbar spine. Biomech. Model. Mechanobiol. 11(1–2), 19–34 (2012). doi:10.1007/s10237-011-0290-6

    Article  Google Scholar 

  4. Crisco, J.J., Fujita, L., Spenciner, D.: The dynamic flexion/extension properties of the lumbar spine in vitro using a novel pendulum system. J. Biomech. 40(12), 2767–2773 (2007). doi:10.1016/j.jbiomech.2006.12.013

    Article  Google Scholar 

  5. de Zee, M., Hansen, L., Wong, C., Rasmussen, J., Simonsen, E.B.: A generic detailed rigid-body lumbar spine model. J. Biomech. 40(6), 1219–1227 (2007). doi:10.1016/j.jbiomech.2006.05.030

    Article  Google Scholar 

  6. Delp, S., Suryanarayanan, S., Murray, W., Uhlir, J., Triolo, R.: Architecture of the rectus abdominis, quadratus lumborum, and erector spinae. J. Biomech. 34(3), 371–375 (2001)

    Article  Google Scholar 

  7. Delp, S.L., Anderson, F.C., Arnold, A.S., Loan, P., Habib, A., John, C.T., Guendelman, E., Thelen, D.G.: OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans. Biomed. Eng. 54(11), 1940–1952 (2007)

    Article  Google Scholar 

  8. Ferreira, A., Silva, M.T., Levy-Melancia, J.: A multibody model of the human cervical spine for the simulation of traumatic and degenerative disorders. In: 8th World Congress on Computational Mechanics (WCCM8), Venice, Italy, pp. 1–2 (2008)

    Google Scholar 

  9. Gardner-Morse, M.G., Stokes, I.A.F.: The effects of abdominal muscle coactivation on lumbar spine stability. Spine 23(1), 86–92 (1998). doi:10.1097/00007632-199801010-00019

    Article  Google Scholar 

  10. Gardner-Morse, M.G., Stokes, I.A.F.: Physiological axial compressive preloads increase motion segment stiffness, linearity and hysteresis in all six degrees of freedom for small displacements about the neutral posture. J. Orthop. Res. 21(3), 547–552 (2003)

    Article  Google Scholar 

  11. Gardner-Morse, M.G., Stokes, I.A.F.: Structural behavior of the human lumbar spinal motion segments. J. Biomech. 37(2), 205–212 (2004). doi:10.1016/j.jbiomech.2003.10.003

    Article  Google Scholar 

  12. Gardner-Morse, M.G., Laible, J.P., Stokes, I.A.F.: Incorporation of spinal flexibility measurements into finite element analysis. J. Biomech. Eng. 112, 481–483 (1990)

    Article  Google Scholar 

  13. Gercek, E., Hartmann, F., Kuhn, S., Degreif, J., Rommens, P., Rudig, L.: Dynamic angular three-dimensional measurement of multisegmental thoracolumbar motion in vivo. Spine 33(21), 2326–2333 (2008)

    Article  Google Scholar 

  14. Hill, A.: The heat of shortening and the dynamic constants of muscle. Proc. R. Soc. Lond. B, Biol. Sci. 126(843), 136–195 (1938)

    Article  Google Scholar 

  15. Huynh, K.T., Gibson, I., Lu, W.F., Jagdish, B.N.: Simulating dynamics of thoracolumbar spine derived from LifeMOD under haptic forces. World Acad. Sci., Eng. Technol. 64, 278–285 (2010)

    Google Scholar 

  16. Janevic, J., Ashton-Miller, J.A., Schultz, A.B.: Large compressive preloads decrease lumbar motion segment flexibility. J. Orthop. Res. 9(2), 228–236 (1991)

    Article  Google Scholar 

  17. Kwang, T., Gibson, I., Jagdish, B.: Detailed spine modeling with LifeMOD™. In: Proceedings of the 3rd International Convention on Rehabilitation Engineering & Assistive Technology, pp. 1–5 (2009). doi:10.1145/1592700.1592729

    Google Scholar 

  18. Lambrecht, J.M., Audu, M.L., Triolo, R.J., Kirsch, R.F.: Musculoskeletal model of trunk and hips for development of seated-posture-control neuroprosthesis. J. Rehabil. Res. Dev. 46(4), 515–528 (2009)

    Article  Google Scholar 

  19. Ledesma, R., Ma, Z.D., Hulbert, G., Wineman, A.: A nonlinear viscoelastic bushing element in multibody dynamics. Comput. Mech. 17, 287–296 (1996). doi:10.1007/BF00368551

    Article  MATH  Google Scholar 

  20. Lee, S.H.: Biomechanical modeling and control of the human body for computer animation. Ph.D. thesis, University of California, Los Angeles (2008)

  21. Lee, S.H., Eftychios Sifakis, E., Terzopoulos, D.: Comprehensive biomechanical modeling and simulation of the upper body. ACM Trans. Graph. 28, 1–17 (2009). doi:10.1145/1559755.1559756

    Google Scholar 

  22. Metzger, M.F., Faruk Senan, N.A., O’Reilly, O.M.: On Cartesian stiffness matrices in rigid body dynamics: an energetic perspective. Multibody Syst. Dyn. 24(4), 441–472 (2010). doi:10.1007/s11044-010-9205-z

    Article  MathSciNet  MATH  Google Scholar 

  23. Monteiro, N.M.B., da Silva, M.P.T., Folgado, J.O.M.G., Melancia, J.P.L.: Structural analysis of the intervertebral discs adjacent to an interbody fusion using multibody dynamics and finite element cosimulation. Multibody Syst. Dyn. 25, 245–270 (2011). doi:10.1007/s11044-010-9226-7

    Article  Google Scholar 

  24. O’Reilly, O.M., Metzger, M.F., Buckley, J.M., Moody, D.A., Lotz, J.C.: On the stiffness matrix of the intervertebral joint: application to total disk replacement. J. Biomech. Eng. 131, 081007 (2009). doi:10.1115/1.3148195

    Article  Google Scholar 

  25. Panjabi, M.M.: Theoretical treatment of vibrations in single and multiple body suspension systems based on matrix methods. Ph.D. thesis, Chalmers University of Technology, Goteborg, Sweden (1971)

  26. Panjabi, M., Abumi, K., Duranceau, J., Oxland, T.R.: Three-dimensional mathematical model of the human spinal structure. J. Biomech. 6, 671–680 (1973)

    Article  Google Scholar 

  27. Panjabi, M.M., Brand, R.A. Jr., White III, A.A.: Three-dimensional flexibility and stiffness properties of the human thoracic spine. J. Biomech. 9(4), 185–192 (1976). doi:10.1016/0021-9290(76)90003-8

    Article  Google Scholar 

  28. Patwardhan, A.G., Havey, R.M., Carandang, G., Simonds, J., Voronov, L.I., Ghanayem, A.J., Meade, K.P., Gavin, T.M., Paxinos, O.: Effect of compressive follower preload on the flexion-extension response of the human lumbar spine. J. Orthop. Res. 21(3), 540–546 (2006). doi:10.1016/S0736-0266(02)00202-4

    Article  Google Scholar 

  29. Silva, M.T.: Human motion analysis using multibody dynamics and optimization tools. Ph.D. thesis, Technical University of Lisbon, Lisbon (2003)

  30. Stokes, I.A.F., Gardner-Morse, M.: Lumbar spine maximum efforts and muscle recruitment patterns predicted by a model with multijoint muscles and joints with stiffness. J. Biomech. 28(2), 173–186 (1995)

    Article  Google Scholar 

  31. Stokes, I.A.F., Gardner-Morse, M.: Lumbar spinal muscle activation synergies predicted by multi-criteria cost function. J. Biomech. 34, 733–740 (2001)

    Article  Google Scholar 

  32. Stokes, I.A.F., Gardner-Morse, M.G.: Spinal stiffness increases with axial load: another stabilizing consequence of muscle action. J. Electromyogr. Kinesiol. 13(4), 397–402 (2003). doi:10.1016/S1050-6411(03)00046-4

    Article  Google Scholar 

  33. Stokes, I.A.F., Iatridis, J.C.: Basic Orthopaedic Biomechanics and Mechano-Biology. In: Mow, V.C., Huiskes, R. (eds.) Biomechanics of the Spine, 3rd edn., pp. 529–561. Lippincott Williams & Wilkins, Philadelphia (2005)

    Google Scholar 

  34. Stokes, I.A.F., Gardner-Morse, M., Henry, S.M., Badger, G.J.: Decrease in trunk muscular response to perturbation with preactivation of lumbar spinal musculature. Spine 25(15), 1957–1964 (2000). doi:10.1097/00007632-200008010-00015

    Article  Google Scholar 

  35. Stokes, I.A.F., Gardner-Morse, M.G., Churchill, D., Laible, J.P.: Measurement of a spinal motion segment stiffness matrix. J. Biomech. 35(4), 517–521 (2002)

    Article  Google Scholar 

  36. Tawackoli, W., Marco, R., Liebschner, M.A.K.: The effect of compressive axial preload on the flexibility of the thoracolumbar spine. Spine 29(9), 988–993 (2004)

    Article  Google Scholar 

  37. Thelen, D.G.: Adjustment of muscle mechanics model parameters to simulate dynamic contractions in older adults. J. Biomech. Eng. 125, 70–77 (2003)

    Article  Google Scholar 

  38. Thelen, D.G., Anderson, F.: Using computed muscle control to generate forward dynamic simulations of human walking from experimental data. J. Biomech. Eng. 39, 1107–1115 (2006)

    Article  Google Scholar 

  39. Thelen, D.G., Anderson, F., Delp, S.: Generating dynamic simulations of movement using computed muscle control. J. Biomech. Eng. 36, 321–328 (2003)

    Article  Google Scholar 

  40. van Lopik, D.W., Acar, M.: Development of a multi-body computational model of human head and neck. Proc. Inst. Mech. Eng., Proc., Part K, J. Multi-Body Dyn. 221(2), 175–197 (2007). doi:10.1243/14644193JMBD84

    Article  Google Scholar 

  41. Vasavada, A.N., Li, S., Delp, S.L.: Influence of muscle morphometry and moment arms on the moment-generating capacity of human neck muscles. Spine 23(4), 412–422 (1998)

    Article  Google Scholar 

  42. White III, A.A., Panjabi, M.M.: Clinical Biomechanics of the Spine. Lippincott, Philadelphia (1978)

    Google Scholar 

  43. Wong, K.W.N., Luk, K.D.K., Leong, J.C.Y., Wong, S.F., Wong, K.K.Y.: Continuous dynamic spinal motion analysis. Spine 31(4), 414–419 (2006)

    Article  Google Scholar 

  44. Zajac, F.E.: Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Crit. Rev. Biomed. Eng. 17(4), 359–411 (1989)

    Google Scholar 

Download references

Acknowledgements

The authors thank Professor Scott Delp and the members of the OpenSim team for their generous technical support with this software. Maurice Curtin’s work was supported by Enterprise Ireland and a bursary from University College Dublin, while the four other coauthors’ work was partially supported by the National Science Foundation of the United States under Grant No. CMMI 0726675.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver M. O’Reilly.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

11044_2012_9331_MOESM1_ESM.pdf

Electronic supplementary material for On the modeling of the intervertebral joint in multibody models for the spine: Review of Stiffness Matrices for the Intervertebral Joint (PDF 200 kB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christophy, M., Curtin, M., Faruk Senan, N.A. et al. On the modeling of the intervertebral joint in multibody models for the spine. Multibody Syst Dyn 30, 413–432 (2013). https://doi.org/10.1007/s11044-012-9331-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-012-9331-x

Keywords

Navigation