Skip to main content
Log in

Singularity-free simulation of closed loop multibody systems by using null space of Jacobian matrix

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

Numerical simulation of closed loop multibody systems is associated with numerical solution of equations of motion which are, in general, in the form of DAE’s index-3 systems. For assuring continuous simulation, one should overcome some difficulties such as stabilization of the constraint equations, singular configuration of the system. In this paper, the system equations of motion with the Lagrange multipliers is rewritten by introducing generalized reaction forces. The combination with the condition of ideality of constraints leads to the system of equations which can be solved by numerical techniques smoothly, even over singular positions. Based on the new criterion of ideality of constraints, which relates generalized reaction forces and the null space matrix of Jacobian matrix, it is possible also to remove reaction forces and use only the reduced system of equations with null space matrix for passing singular positions. In order to prevent the constraint equations from the accumulated errors of integral time, the method of position and velocity projection has been exploited. Some numerical experiments are carried out to verify the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Amirouche, F.M.L., Tung, C.-W.: Regularization and stability of the constraints in the dynamics of multibody systems. Nonlinear Dyn. 1(6), 459–475 (1990)

    Article  Google Scholar 

  2. Bauchau, O.A., Laulusa, A.: Review of contemporary approaches for constraint enforcement in multibody system. J. Comput. Nonlinear Dyn. 3, 011005 (2008)

    Article  Google Scholar 

  3. Baumgarte, J.: Stabilization of constraints and integrals of motion in dynamical systems. Comput. Methods Appl. Mech. Eng. 1, 1–16 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bayo, E., Avello, A.: Singularity-free augmented Lagrangian algorithms for constrained multibody dynamics. Nonlinear Dyn. 5, 209–231 (1994)

    Google Scholar 

  5. Bayo, E., Ledesma, R.: Augmented Lagrangian and mass-orthogonal projection methods for constrained multibody dynamics. Nonlinear Dyn. 9, 113–130 (1996)

    Article  MathSciNet  Google Scholar 

  6. Bayo, E., Jalon, J.G., Serna, M.A.: A modified Lagrangian formulation for the dynamic analysis of constrained mechanical systems. Comput. Methods Appl. Mech. Eng. 71, 183–195 (1988)

    Article  MATH  Google Scholar 

  7. Blajer, W., Schiehlen, W., Schirm, W.: A projective criterion to the coordinate partitioning method for multibody dynamics. Arch. Appl. Mech. 64, 215–222 (1994)

    Google Scholar 

  8. Blajer, W.: Elimination of constraint violation and accuracy aspects in numerical simulation of multibody systems. Multibody Syst. Dyn. 7, 265–284 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Braun, D.J., Goldfarb, M.: Eliminating constraint drift in the numerical simulation of constrained dynamical systems. Comput. Methods Appl. Mech. Eng. 198(37–40), 3151–3160 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Eich, E.: Convergence results for a coordinate projection method applied to mechanical systems with algebraic constraints. SIAM J. Numer. Anal. 30, 1467–1482 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ider, S.K., Amirouche, F.M.L.: Coordinate reduction in constrained spatial dynamic systems—a new approach. J. Appl. Mech. 55, 899–905 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ider, S.K., Amirouche, F.M.L.: Numerical stability of the constraints near singular positions in the dynamics of multibody systems. Comput. Struct. 33, 129–137 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  13. Jalon, J.G., Bayo, E.: Kinematic and Dynamic Simulation of Multibody Systems—The Real-Time Challenge. Springer, New York (1994)

    Book  Google Scholar 

  14. Kamman, J.W., Huston, R.L.: Dynamics of constrained multibody systems. J. Appl. Mech. 51, 899 (1984)

    Article  MATH  Google Scholar 

  15. Kane, T.R., Levinson, D.A.: Dynamics: Theory and Applications. McGraw-Hill, New York (1985)

    Google Scholar 

  16. Lin, S.T., Huang, J.N.: Stabilization of Baumgarte’s method using the Runge–Kutta approach. J. Mech. Des. 124(4), 633 (2002)

    Article  Google Scholar 

  17. Meyer, C.D.: Matrix Analysis and Applied Linear Algebra. SIAM, Philadelphia (2001)

    Google Scholar 

  18. Murray, R.M., Li, Z., Sastry, S.S.: A Mathematical Introduction to Robotic Manipulation. CRC Press, Boca Raton (1994)

    MATH  Google Scholar 

  19. Nikravesh, P.E.: Some methods for dynamic analysis of constrained mechanical systems: a survey. In: Haug, E.J. (ed.) Computer-Aided Analysis and Optimization of Mechanical System Dynamics, pp. 351–368. Springer, Berlin (1984)

    Google Scholar 

  20. Nikravesh, P.E.: Computer-Aided Analysis of Mechanical Systems. Prentice Hall, Englewood Cliffs (1988)

    Google Scholar 

  21. Orden, J.C.G., Ortega, R.A.: A conservative augmented Lagrangian algorithm for the dynamics of constrained mechanical systems. In: The Third European Conference on Computational Mechanics (2006)

    Google Scholar 

  22. Petzold, L.R., Ren, Y., Maly, T.: Regularization of higher-index differential-algebraic equations with rank-deficient constraints. SIAM J. Sci. Comput. 18, 753–774 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  23. Phong, D.V.: Principle of compatibility and criteria of ideality in study of constrained mechanical systems. Stroj. čas. 47(1), 2–11 (1996)

    MathSciNet  Google Scholar 

  24. Phong, D.V.: An algorithm for deriving equations of motion of constrained mechanical system. J. Mech., NCNST Vietnam 21(1), 36–44 (1999)

    MathSciNet  Google Scholar 

  25. Schiehlen, W. (ed.): Multibody System Handbook. Springer, Heidelberg (1990)

    Google Scholar 

  26. Schiehlen, W.: Multibody system dynamics: roots and perspectives. Multibody Syst. Dyn. 1, 149–188 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  27. Shabana, A.A.: Dynamics of Multibody Systems, 2nd edn. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  28. Terze, Z., Lefeber, D., Muftic, O.: Null space integration method for constrained multibody system simulation with no constraint violation. Multibody Syst. Dyn. 6, 229–243 (2001)

    Article  MATH  Google Scholar 

  29. Terze, Z., Naudet, J.: Geometric properties of projective constraint violation stabilization method for generally constrained multibody systems on manifolds. Multibody Syst. Dyn. 20, 85–106 (2008)

    Article  MATH  Google Scholar 

  30. Terze, Z., Naudet, J.: Structure of optimized generalized coordinates partitioned vectors for holonomic and non-holonomic systems. Multibody Syst. Dyn. 24, 203–218 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Tseng, F.C., Ma, Z.D., Hulbert, G.M.: Efficient numerical solution of constrained multibody dynamics systems. Comput. Methods Appl. Mech. Eng. 192, 439–472 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  32. Udwadia, F.E., Kalaba, R.E.: Analytical Dynamics: A New Approach. Cambridge University Press, Cambridge (1996)

    Book  Google Scholar 

  33. Wehage, R.A., Haug, E.J.: Generalized coordinate partitioning for dimension reduction in analysis of constrained dynamic systems. J. Mech. Des. 104, 247–255 (1982)

    Article  Google Scholar 

  34. Yoon, S., Howe, R.M., Greenwood, D.T.: Geometric elimination of constraint violations in numerical simulation of Lagrangian equations. J. Mech. Des. 116, 1058–1064 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen Quang Hoang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Phong, D.V., Hoang, N.Q. Singularity-free simulation of closed loop multibody systems by using null space of Jacobian matrix. Multibody Syst Dyn 27, 487–503 (2012). https://doi.org/10.1007/s11044-011-9291-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-011-9291-6

Keywords

Navigation