Skip to main content
Log in

Panel flutter analysis of plate element based on the absolute nodal coordinate formulation

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

In this study, aeroelastic analysis of a plate subjected to the external supersonic airflow is carried out. A 3-D rectangular plate element of variable thickness based on absolute nodal coordinate formulation (ANCF) has been developed for the structural model. In the approach to the problem, a continuum mechanics approach for the definition of the elastic forces within the finite element is considered. Both shear strain and transverse normal strain are taken into account. Linearized first-order potential (piston) theory is coupled with the structural model to account for pressure loading. Aeroelastic equations using ANCF are derived and solved numerically. Values of critical dynamic pressure are obtained by a modal approach, in which the mode shapes are obtained by ANCF. All the formulations and the computations are built up in a FORTRAN 90 computer program after it was confirmed by Mathematica®, ver. 5. The results of free vibration analysis and flutter are compared with the available references and reasonable good agreement has been found. However, some results indicate that the known problem of locking (ANCF with uniform thickness) still persist in the current developed formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Librescu, L., Marzocca, P., Silva, W.A.: Supersonic/hypersonic flutter and postflutter of geometrically imperfect circular cylindrical panels. J. Spacecr. Rockets 39(5), 802–812 (2002)

    Article  Google Scholar 

  2. Bismarck-Nasr, M.N.: Finite elements in aeroelasticity of plates and shells. Appl. Mech. Rev. 49, 17–24 (1996)

    Article  Google Scholar 

  3. Sabri, F., Lakis, A.A.: Hybrid finite element method applied to supersonic flutter of an empty or partially liquid-filled truncated conical shell. J. Sounds Vib. 329, 302–316 (2010)

    Article  Google Scholar 

  4. Dowell, E.H.: Aeroelasticity of Plates and Shells. Noordhoff, Leyden (1975)

    MATH  Google Scholar 

  5. Abbas, L.K., Rui, X., Hammoudi, Z.S.: Plate/shell element of variable thickness based on the absolute nodal coordinate formulation. Proc. Inst. Mech. Eng., Proc. Part K, J. Multi-Body Dyn. 224, 127–141 (2010)

    Google Scholar 

  6. Shabana, A.A.: Definition of the slopes and the finite element absolute nodal coordinate formulation. Multibody Syst. Dyn. 1, 339–348 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Sereshk, M.V., Salimi, M.: Comparison of finite element method based on nodal displacement and absolute nodal coordinate formulation (ANCF) in thin shell analysis. Commun. Numer. Methods Eng. doi:10.1002/cnm.1348

  8. Schwab, A.L., Gerstmayr, J., Meijaard, J.P.: Comparison of three-dimensional flexible thin plate elements for multibody dynamic analysis: Finite element formulation and absolute nodal coordinate formulation. In: Proceedings of the ASME 2007 Int. Design Engineering Technical Conferences & Computers and Information in Engineering Conference, IDETC/CIE 2007, Las Vegas, USA, September 4–7 (2007). DETC2007-34754

    Google Scholar 

  9. Shabana, A.A., Christensen, A.P.: Three-dimensional absolute nodal co-ordinate formulation: plate problem. Int. J. Numer. Methods Eng. 40, 2775–2790 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Mikkola, A.M., Shabana, A.A.: A non-incremental finite element procedure for the analysis of large deformations of plates and shells in mechanical system applications. Multibody Syst. Dyn. 9, 283–309 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Liu, J.Y., Ma, Y.Z., Hong, J.Z.: Geometrical nonlinear formulation for a rectangular plate with large deformation. J. Shanghai Jiaotong University (Sci.) 12(6), 831–837 (2007)

    Google Scholar 

  12. Mikkola, A.M., Matikainen, M.K.: Development of elastic forces for a large deformation plate element based on the absolute nodal coordinate formulation. J. Comput. Nonlinear Dyn. 1, 103–108 (2006)

    Article  Google Scholar 

  13. Matikainen, M.K., Schwab, A.L., Mikkola, A.M.: Comparison of two moderately thick plate elements based on the absolute nodal coordinate formulation. In: Multibody Dynamics 2009, ECCOMAS Thematic Conference, Warsaw, Poland, 29 June–2 July (2009)

    Google Scholar 

  14. Mikkola, A.M., Shabana, A.A.: A new plate element based on the absolute nodal coordinate formulation. In: Proceedings of ASME 2001 DETC, Pittsburgh (2001)

    Google Scholar 

  15. Dmitrochenko, O.N., Pogorelov, D.Y.: Generalization of plate finite elements for absolute nodal coordinate formulation. Multibody Syst. Dyn. 10(1), 17–43 (2003)

    Article  MATH  Google Scholar 

  16. Dufva, K., Shabana, A.A.: Analysis of thin plate structures using the absolute nodal coordinate formulation. Proc. Inst. Mech. Eng., Proc. Part K, J. Multi-Body Dyn. 219(4), 345–355 (2005)

    Google Scholar 

  17. Dmitrochenko, O.N., Mikkola, A.M.: Two simple triangular plate elements based on the absolute nodal coordinate formulation. J. Comput. Nonlinear Dyn. 3(4), 1-1-8 (2008)

    Article  Google Scholar 

  18. Yoo, W.S., Lee, J.H., Sohn, J.H., Park, S.J., Pogorelov, D., Dmitrotchenko, O.N.: Large deflection analysis of a thin plate: Computer simulation and experiments. Multibody Syst. Dyn. 11(2), 185–208 (2004)

    Article  MATH  Google Scholar 

  19. Shabana, A.A.: Computational Continuum Mechanics. Cambridge University Press, Cambridge (2008)

    Book  MATH  Google Scholar 

  20. Garcia-Vallejo, D., Mayo, J., Escalona, J.L., Dominguez, J.: Efficient evaluation of the elastic forces and the Jacobian in the absolute nodal coordinate formulation. Nonlinear Dyn. 35, 313–329 (2004)

    Article  MATH  Google Scholar 

  21. Ashley, H., Zartarian, G.: Piston theory–new aerodynamic tool for aeroelastician. J. Aeronaut. Sci. 23, 1109–1118 (1956)

    MathSciNet  Google Scholar 

  22. Shabana, A.A.: Dynamics of Multibody Systems, 3rd edn. Cambridge University Press, Cambridge (2005)

    Book  MATH  Google Scholar 

  23. Olsen, M.D.: Some flutter solutions using finite elements. AIAA J. 8(4), 747–752 (1970)

    Article  Google Scholar 

  24. Rossettos, J.N., Tong, P.: Finite element analysis of vibration and flutter of cantilever anisotropic plates. J. Appl. Mech. Trans. Am. Soc. Mech. Eng. 1075–1080 (1974)

  25. Bathe, K.J.: Finite Element Procedure in Engineering Analysis. Prentice-Hall, Englewood Cliffs (1986)

    Google Scholar 

  26. Srinivasan, R.R., Babu, B.J.C.: Flutter analysis of cantilevered quadrilateral plates. J. Sound Vib. 98(1), 45–53 (1985)

    Article  Google Scholar 

  27. Srinivasan, R.R., Babu, B.J.C.: Free vibration and flutter of laminated quadrilateral plates. Comput. Struct. 27(2), 297–304 (1987)

    Article  MATH  Google Scholar 

  28. Sander, G., Bon, C., Geradin, M.: Finite element analysis of supersonic panel flutter. Int. J. Numer. Methods Eng. 7, 379–394 (1973)

    Article  MATH  Google Scholar 

  29. Durvasula, S.: Flutter of simply supported parallelogramic flat panels in supersonic flow. AIAA J. 5, 1668–1673 (1967)

    Article  MATH  Google Scholar 

  30. Dowell, E.H.: Theoretical vibration and flutter studies of point supported panels. J. Spacecr. Rockets 10, 389–395 (1973)

    Article  Google Scholar 

  31. Srinivasan, R.R., Munuswamy, K.: Frequency analysis of skew orthotropic point supported plates. J. Sound Vib. 39, 207–216 (1975)

    Article  MATH  Google Scholar 

  32. Petyt, M., Mirza, W.H.: Vibration of column supported floor slabs. J. Sound Vib. 29, 355–364 (1972)

    Article  Google Scholar 

  33. Campanelli, M., Berzeri, M., Shabana, A.A.: Performance of the incremental and non-incremental finite element formulations in flexible multibody problems. ASME J. Mech. Des. 122, 498–507 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laith K. Abbas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abbas, L.K., Rui, X. & Marzocca, P. Panel flutter analysis of plate element based on the absolute nodal coordinate formulation. Multibody Syst Dyn 27, 135–152 (2012). https://doi.org/10.1007/s11044-011-9268-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-011-9268-5

Keywords

Navigation